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Abstract

The theoretical basis of a Gaussian-like approximate solution was applied to a chromatographic impulse response technique with curve
fitting for measuring binary diffusion coefficients and retention factors using a polymer-coated capillary column. The formulae were derived
for evaluating both the accuracy of the approximate solution and the sensitivity of the parameters. The validity of the solution also was
confirmed experimentally for pulse injection of phenol in acetone into supercritical carbon dioxide flowing at 313.15 K and 11.6–28.6 MPa.
Potential sources for experimental errors of the method are discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Transient response techniques have been employed for
determining transport properties of fluids such as diffusion
coefficients and thermal conductivities. Binary diffusion co-
efficients in supercritical fluids were measured mainly by the
Taylor dispersion method[1,2], which is a type of impulse
response technique. Although a large number of studies on
binary diffusion coefficients in supercritical carbon dioxide
have been reported (refer to[3,4]), few data exist for useful
compounds with relatively high molecular weights.

A low viscous liquid, i.e., low molecular weight com-
pound, can be easily input as a pulse into a solvent stream
through an ordinary HPLC injector. However, highly viscous
or solid solutes, which often have relatively high molecular
weights, are difficult to inject. Thus, the solute is injected
as a solution in a supercritical fluid[5–14] or other solvent
(such as hexane[15,16] and isooctane[17]) having essen-
tially no UV absorption because a UV detector is commonly
employed. Both choices possess some drawbacks: adjusting
the amount of the input solute is difficult in the former case,
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and the effect of the dissolving solvent on diffusion coeffi-
cients is not clear in the latter case. When a capillary column
coated with a polymer film on the inner wall is employed,
a certain amount of highly viscous liquid or a solid solute
dissolved in an organic solvent can be loaded. Since the so-
lute and organic solvent are chromatographically separated
in the column, the effect of the solvent can be eliminated.

Lai and Tan[18] employed a polymer-coated diffusion
column for the measurements of binary diffusion coefficients
and retention factors, which were analyzed by the moment
method. While this method does not require the analytical
solution of the fundamental differential equation inEq. (1),
it has been noted that small errors in the frontal and the
tailing portions of the response signals are unduly weighted
(refer to [19]). Moreover, the validity of the model cannot
be judged by this method because the degree of the fit of
the calculated response curve to that measured experimen-
tally cannot be evaluated directly. Although the curve-fitting
method overcomes these drawbacks, it requires analytical
expression of the response curve.

For linear and equilibrium adsorption occurring on and/or
in a polymer film coated on the column wall, Golay[20]
derived an approximate equation for cross-sectional average
concentration based on the quadratic profile in the column.
Funazukuri et al.[21,22] have determined infinite-dilution
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binary diffusion coefficients and retention factors for highly
viscous and solid compounds in supercritical carbon dioxide
with a Gaussian-like approximate solution[23].

The severe distortion and/or tailing of the response curves,
mainly caused by the strong solute polarity, cannot be rep-
resented by the Gaussian-like approximate solution to a lin-
ear and equilibrium adsorption isotherm. Although Madras
et al. [24] have determined from numerical calculations
that non-equilibrium adsorption causes tailing of response
curves in the Taylor dispersion measurements, tailing for
most solutes, except for those strong polar compounds such
as solutes with carboxyl groups, is not significant with a
polymer-coated capillary column. Thus, we can assume that
the partitioning of a solute between the polymer and the su-
percritical phases behaves as a linear and equilibrium ad-
sorption isotherm unless the solute is strongly polar and/or
unless the concentration is high.

As mentioned earlier, the impulse response method with
a polymer-coated capillary column is amenable to measure-
ment of binary diffusion coefficients and retention factors
for various solutes having low to medium polarity over a
wide range of molecular weights. This method is applicable
to the analysis of transport phenomena in various thermo-
dynamic measurements and to processes involving chemical
reactions and separations such as supercritical fluid extrac-
tion and chromatography. However, the theoretical basis is
not well understood. Thus, our objective is to provide a the-
oretical basis for the curve-fitting method when determining
binary diffusion coefficients and retention factors from im-
pulse response measurements with a polymer-coated capil-
lary column. In addition, we demonstrate experimentally the
validity of this method. From a single injection of a solid
solute dissolved in an organic solvent (for example, phenol
in acetone), the simultaneous determination of binary diffu-
sion coefficient and retention factor was accomplished for
both solute and solvent. Finally, we examine the effects of
the solvent (acetone) on parameters of the solute (phenol)
by multiple injections of the solvent soon after loading the
tracer solution into the diffusion column.

2. Prediction of impulse response curve

2.1. Linear adsorption model

When a tracer component is pulse-injected into a fully
developed laminar flow in a cylindrical column, and the
assumption that the physical properties are constant during
each measurement can be made, the tracer concentration
c(r, φ, x, t) is described as[2,25]:
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whereD12 is the binary diffusion coefficient of the tracer
component in the fluid,R the column radius,ua the average
fluid velocity, t the time, andr, φ andx the radial, angular
and axial variables, respectively. On the inner wall coated
with an adsorbent, the following boundary condition is given
with the assumption that an adsorption isotherm is linear and
the tracer component instantaneously reaches equilibrium
between the fluid and adsorbent on the wall:

k
∂c

∂t
= −2D12

R

∂c

∂r
at r = R (4)

wherek is the retention factor, also called the partition ratio
or capacity factor. Assuming that the tracer component at-
tains equilibrium on the wall att = 0, initial condition for
the pulse input can be written as:

c =
( m

πR2

) δ(x)

1 + k
at t = 0 (5)

wherem is the injected amount of tracer.
According to the symmetric concentration profile around

the x-axis for initial condition ofEq. (5), c is a function of
r, x andt. Althoughφ is eliminated later, the inclusion ofφ
at this point is practical.

In most experiments, average concentration over the
cross-section of a column is measured by a UV detector.C
is the cross-sectional average concentration:

C(x, t) = 2

R2

∫ R

0
c(r, x, t)r dr (6)

We call this model the cylindrical model. Because it is dif-
ficult to obtain the analytical expression forC, we derive an
approximate solution forC in Section 2.2.

2.2. Gaussian-like approximate solution

By assuming that|c(r, x, t) − C(x, t)| � C(x, t), Golay
[20] derived an approximate equation forC from Eqs. (1),
(2) and (4):
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It should be noted that the second term ofEq. (7a)is domi-
nant. If the first term is significant, we need not make mea-
surements in a flowing system. Therefore, in this paper, we
consider the following condition:

(1 + 6k + 11k2)
R2U2

48D12
2

	 1 (8)

Practically, this assumption is valid for supercritical and liq-
uid solvents.

Forb = 0, we obtain the following approximate equations
for C:

∂Capp

∂t
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∂2Capp

∂z2
(9)

Capp = 0 atz = ±∞ (10)
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( m
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at t = 0 (11)

Eqs. (9)–(11)can be solved as:
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πR2

) 1
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√
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4at

}
for x, t > 0 (12)

Cappis the Gaussian-like approximate solution. As discussed
in Section 3, a simple analytical expression enables the the-
oretical evaluation of parameter sensitivity.

2.3. Accuracy of approximation

The validity of the approximation fromC to Capp can be
examined by comparing spatial moments, as Aris[2] did for
the Taylor dispersion. Using the space variablez defined in
Eq. (7c)instead ofx, thenth spatial central moment ofc is
defined as:

c(n)(r, t) =
∫ ∞

−∞
c(r, z, t)zn dz (13)

The overall cross-sectional average concentration,C̄(n), de-
fined as the total amount of solute both in fluid and in poly-
mer phase per cross-sectional area, is given by:

C̄(n)(t) = 2

R2

∫ R

0
c(n)(r, t)r dr + kc(n)(R, t) (14)

Then, the first and the second moments are given byEqs. (15)
and (16)(seeAppendix A):

C̄(1)(t) = 0 (15)

C̄(2)(t)

C̄(0)
= 2at − Γ(t) (16)

where
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λn is thenth positive root of the following equation:

2J1(λ)+ kλJ0(λ) = 0 (16b)

andJ0(λ) andJ1(λ) are the Bessel functions of the first kind
of order 0 and 1, respectively.

On the other hand, the overall cross-sectional average of
the Gaussian-like approximate solution,C̄app, is given as:

C̄app(x, t) = (1 + k)Capp(x, t) (17)

Then, the first and the second spatial moments are:

C̄app
(1)(t) = 0 (18)
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(2)(t)
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(0)

= 2at (19)

Since the first terms in the RHS ofEqs. (16) and (19)are
identical, the residual term inEq. (16), −Γ(t), can be con-
sidered as an index of the accuracy ofCapp. The second term
in the RHS ofEq. (16a)is roughly approximated by the first
term of the summation (n = 1). In fact, by definingΛ(t) as:
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Λ(t) can be estimated as unity because:

1< Λ(t) < 1 +
∞∑
n=2

1

(λn/λ1)8

∼=
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n=1

1

n8
= π8

9450
∼= 1.0041 (21)

Note thatλ0n ≤ λ1 ≤ λ1n, whereλ0n andλ1n are thenth
positive roots ofJ0(λ) = 0 andJ1(λ) = 0, respectively.
Fig. 1 showsλ1 for variousk values. The second term in
Γ (t) usually is smaller than the first.
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Fig. 1. λ1 vs. k. Broken lines showλ01 = 2.40483 andλ11 = 3.83171,
corresponding to the first positive zero points ofJ0(x) and J1(x), respec-
tively.



180 C.Y. Kong et al. / J. Chromatogr. A 1035 (2004) 177–193

Elimination of the residual terms inEq. (16)is compen-
sated for by changing the parameter values of the first term
as 2(a+�a)t. Therefore,

�a

a
= −Γ(t)

2at
(22)

In Eq. (22), whenD12 varies andk does not, eliminating the
first term inEq. (7a)provides:

�D12

D12

∼= Γ(t)

2at
(23)

3. Parameter determination by curve fitting

3.1. Curve fitting in the time domain

When relative fluid concentration is measured, the nor-
malized concentration,̂Capp, which reduces the area equal
to unity in the time interval [t1, t2], is used. FromEq. (12)
at x = L:

Ĉapp(t) ≡ (1/
√

4πat)exp{−(L− Ut)2/(4at)}∫ t2
t1
(1/

√
4πat)exp{−(L− Ut)2/(4at)}dt (24)

Theoretically a whole time region [0,∞) may be used, which
is represented by:

Ĉapp(t) ≡ Capp(L, t)∫∞
0 Capp(L, t)dt

= U√
4πat

exp

{
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4at

}
(25)

Practically, however, the time region may be restricted within
the reliable range to avoid experimental error. For example
[21,26], t1 and t2 are chosen at 10% of the frontal and the
latter peak height of the measured curve, respectively.

The measured and normalized response curves,Ĉmeas(t),
are compared with the calculated curves,Ĉapp(t). The degree
of fit can be estimated in terms of the root-mean-square
(rms) error defined byEq. (26):

ε =
[∫ t2

t1
{Ĉmeas(t)− Ĉapp(t)}2dt∫ t2

t1
{Ĉmeas(t)}2dt

]1/2

(26)

where

Ĉmeas(t) ≡ Cmeas(t)∫ t2
t1
Cmeas(t)dt

(26a)

Parameter values are determined by minimizing errorε. The
unknown parameters of this system arek, D12 andua. Be-
cause the same values ofU and a give the same normal-
ized response curves represented byEq. (24), k andD12 are
determined as a function ofua for a given response curve.
Therefore, we have to measure directly the fluid velocityua
to obtaink andD12 for a single pulse injection with a coated
column.

Using measured values ofua, the values forU and a
are determined by curve fitting. Values fork and D12 are

obtained by solvingEqs. (7a) and (7d)under condition of
Eq. (8)as follows:

k = ua

U
− 1 (27)
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(28)

3.2. Parameter sensitivity

Parameter sensitivities ofk andD12 with respect toua are
given by differentiatingU = constant anda = constant as:
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k

dk

dua
= 1 + k

k
(29)
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∼= 1 + 4(1 + 4k)
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where the approximation inEq. (30) is made assum-
ing the validity of Eq. (8). For small k, i.e., a weak
adsorption system, we obtain(ua/k)(dk/dua) ∼= 1/k
and (ua/D12)(dD12/dua) ∼= 5, while for a large k,
(ua/k)(dk/dua) ∼= 1 and(ua/D12)(dD12/dua) ∼= 1. There-
fore, for a weak adsorption system, the precise measure-
ment ofua is needed to estimateD12, and the relative error
of D12 becomes a maximum of five-fold larger than the
corresponding error forua.

3.3. Taylor dispersion analysis for weak adsorption

For smallk, the transport in a coated column in a special
case atk = 0 may be regarded as the Taylor dispersion.
The normalized solution̂Capp,0 for the Taylor dispersion is
obtained by settingk = 0 in Eq. (24)as:

Ĉapp,0(t) ≡ (1/
√

4πa0t)exp{−(L− U0t)
2/(4a0t)}∫ t2

t1
(1/

√
4πa0t)exp{−(L− U0t)2/(4a0t)}dt

(31)

where

a0 = D12,0 + R2U0
2

48D12,0
(31a)

In the Taylor dispersion, two parameter values,U0 andD12,0,
are obtainable by the curve-fitting method[26]. If Eq. (31)
instead ofEq. (24) is used for curve fitting with variable
parameters ofU0 andD12,0, we obtainU0 = U anda0 = a.
Ignoring the first terms inEqs. (7a) and (31a)gives:

D12,0 ∼= 1 + k

1 + 6k + 11k2
D12 (32)
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Thus, the relative error is:

D12 −D12,0

D12

∼= k(5 + 11k)

1 + 6k + 11k2
(33)

3.4. Moment method

Initial parameter values for the curve-fitting method can
be obtained from the first and the second temporal moments
of the measured response curve, i.e., mean residence timet̄

and varianceσ2, as:

t̄ ≡
∫∞
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0 Cmeas(t)dt

(34)
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Theoretically, fromEq. (12), the first and the second mo-
ments atx = L are obtained as:
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While solving Eqs. (36) and (37)for k and D12, k is first
obtained by:

k = 2(2 − α)

3 + √
1 + 4α

uat̄

L
− 1 (38)

where

α = σ2

t̄2
(38a)

Then,D12 can be estimated under condition represented by
Eq. (8)as:

D12 ∼= 2γ

β +
√
β2 − 4γ

Lua (39)

where

β = 2α− 1 + √
1 + 4α

4(2 − α)
(39a)

γ = 1 + 6k + 11k2
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R2

48L2
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4. Higher-order approximate solution

4.1. Modification of Golay equation

The distortion of response curve is related to the third
moment. As discussed inSection 2, the first and the sec-
ond spatial moments of the Gaussian-like approximate so-
lution agree with those for the cylindrical model, but the

third moments are different. In fact,C̄(3)(t) does not vanish
but C̄app

(3)(t) = 0. The third moment of the Golay solution
does not become zero, implying that the average concentra-
tion C(x, t) is expressed more accurately by the Golay solu-
tion CG(x, t) than by the Gaussian-like approximate solution
Capp(x, t).

In the Golay model, the overall cross-sectional average
concentration is given as̄CG(z, t) = (1 + k)CG(z, t) by
neglecting{c(R, z, t) − CG(z, t)}. The first and the second
spatial moments of̄CG agree with those of the Gaussian-like
approximate solution,Eqs. (18) and (19). The third moment
is given as:

C̄G
(3)(t)

C̄G
(0)

= 6abt (40)

On the other hand, the third spatial moment for the cylin-
drical model is given as (Appendix A):

C̄(3)(t)

C̄(0)
=R2U

{
k(1 + 4k)

2(1 + k)2

+ 1 + 10k + 44k2 + 122k3 + 177k4
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R2U2

480D12
2

}
t

+Ξ(t) (41)

whereΞ(t) is a function such that limt→∞ {Ξ(t)/t} = 0.
When the first term is dominant,b in the Golay equation

should be changed tob∗, the modified Golay equation:

b∗ = R2U

6a

{
k(1 + 4k)

2(1 + k)2
+1 + 10k + 44k2 + 122k3 + 177k4

(1 + k)2

× R2U2

480D12
2

}
(42)

Under condition ofEq. (8):

b∗ ∼= 1 + 10k + 44k2 + 122k3 + 177k4

(1 + k)(1 + 6k + 11k2)

R2U

60D12
(43)

Note thatCG in the modified Golay equation does not reduce
to Capp when k → 0. CG at k = 0 is an approximate so-
lution for the Taylor dispersion whose third moment agrees
with that for the original model, which is equivalent to the
cylindrical model atk = 0.

4.2. Solution of Golay equation

Under boundary and initial conditions, corresponding to
Eqs. (10) and (11)whereCapp is replaced byCG, Eq. (7)
with b∗ is solved (seeAppendix B) using:

CG(x, t)=
( m

πR2

) 1

(1 + k)b∗

√
τ

ζ + τ
exp{−(ζ + 2τ)}

× I1(2
√
(ζ + τ)τ) for x, t > 0 (44)

where

ζ = z

b∗ = 1

b∗ (x− Ut) (44a)
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τ = a

b∗2
t (44b)

andI1(w) is the modified Bessel function of the first kind
of first order, defined as:

I1(w) =
∞∑
n=0

1

n!(n+ 1)!

(w
2

)2n+1
for w ≥ 0 (44c)

Note that whenb∗ → 0, CG reduces toCapp using the
asymptotic properties of the Bessel function,I1(w) →
exp(w)/

√
2πw atw → ∞ (for example, see[27]).

The following rms errorεapp is introduced to estimate the
difference betweenCG andCapp at the detecting point (x =
L):

εapp =
[∫∞

0 {CG(L, t)− Capp(L, t)}2dt∫∞
0 {CG(L, t)}2dt

]1/2

(45)

Error εapp is characterized by the two parameters,A andB:

A = a

LU
(46)

B = b∗

L
(47)

According to practical computation,εapp can be approxi-
mated as:

εapp ≈ 0.5
B√
A

for A < 0.1 and
B√
A
< 0.08 (48)

5. Measurements of binary diffusion coefficient and
retention factor

5.1. Impulse response measurement

The experimental apparatus used for the Taylor disper-
sion method was described previously[26]. In this study, a

Table 1
Fluid velocity ua,measexperimentally measured and the values for binary diffusion coefficientD12, retention factork and fitting errorε obtained from the
curve-fitting method for acetone and phenol in supercritical carbon dioxide at temperature 313.15 K and pressures from 11.6 to 28.6 MPa

Pressure (MPa) ua,meas Acetone Phenol

Mean (10−3 m s−1) S.D./mean (%) D12 (10−8 m2 s−1) k ε (%) D12 (10−8 m2 s−1) k ε (%)

11.64 9.434 1.16 1.843 0.0499 0.83 1.529 2.555 0.16
12.61 9.347 3.61 1.768 0.0461 1.19 1.388 2.250 0.25
13.54 9.097 2.83 1.731 0.0399 3.03 1.370 2.031 0.15
14.37 8.804 1.74 1.675 0.0286 0.96 1.328 1.869 0.14
14.43 9.076 1.53 1.664 0.0401 0.61 1.306 1.893 0.19
16.13 9.144 2.01 1.592 0.0427 0.15 1.261 1.697 0.31
17.37 8.765 1.36 1.540 0.0432 0.96 1.237 1.584 0.12
17.87 8.840 1.03 1.505 0.0482 0.62 1.218 1.548 0.12
20.11 8.697 1.46 1.443 0.0371 0.86 1.176 1.384 0.16
21.90 8.641 0.81 1.387 0.0353 0.88 1.128 1.304 0.03
24.68 8.499 0.92 1.338 0.0381 0.43 1.093 1.199 0.13
25.09 8.620 1.05 1.337 0.0336 0.09 1.083 1.174 0.25
25.30 8.254 0.85 1.349 0.0472 0.49 1.078 1.206 0.16
28.58 8.365 0.78 1.267 0.0374 0.53 1.039 1.090 0.06

diffusion column was replaced by a polymer-coated capil-
lary column (Ultra Alloy CW-15W-1.0F, bonded polyethyl-
ene glycol, film thickness= 1�m, inside diameter=
0.515 mm, length= 15.86 m, coil radius= 135 mm) sup-
plied by Frontier Laboratory, Japan. The radii of both ends
of the column were measured with an X-ray micro-analyzer
(JEOL, JXA 8900RL, Japan). Total volume of the dif-
fusion column between the injector and detector was
evaluated from an impulse response measurement for ben-
zene into a liquid hexane stream at atmospheric pressure
and room temperature. Impulse response measurements
were conducted by injecting the acetone solution of phe-
nol (0.032�mol of phenol was loaded in most runs) as
a tracer into a supercritical CO2 stream at 313.15 K and
11.6–28.6 MPa. Tracer concentration was measured with a
UV-Vis multi-detector (MD-1510, JASCO, Japan) by scan-
ning from 195 to 355 nm at increments of 4 nm. Temporal
changes in flow rates were measured with a soap-bubble
flowmeter 30–40 times in the course of a single run
(from 0 to 80–100 min), and their mean and the ratio of
standard deviation to mean were calculated, as shown in
Table 1.

Acetone (99.5%, Aldrich) and phenol (99%, Aldrich)
were employed without further purification. Wavelengths
of 275 and 271 nm were used in the analyses for acetone
and phenol, respectively.

5.2. Determination of parameter values

As shown inFig. 2(a) and (b), the measured response
curvesĈmeas, shown as blank circles, for acetone and phenol
at 313.15 K and 17.87 MPa are compared to those calculated
from Eq. (24)with assumed values ofD12, and values oft1
andt2 at 10% of the maximum peak height of the measured
curve, the same as in measurements of Funazukuri et al.
[26]. The degree of fit is estimated by the rms errorε as
defined byEq. (26). As shown inFig. 2, we can judge that
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Fig. 2. Comparison of response signal measured (�) at 313.15 K and
17.87 MPa andua,meas = 8.84 × 10−3 m s−1 with those predicted with
some parameter values (lines) for: (a) acetone at 275 nm andk = 0.0482;
(b) phenol at 271 nm andk = 1.548.

the agreement is good forε < 0.01 and acceptable forε <
0.03.

Parameter values were determined by minimizing the er-
ror. A set of parameter values with the same error value
makes a contour in the parameter space.Fig. 3(a) and (b)
depict the error contour maps in thek–D12 plane for the
data shown inFig. 2(a) and (b)at the velocityua,meas =
8.84×10−3 m s−1. From these figures,k andD12 can be es-
timated simultaneously from a single run ask = 0.0482 and
D12 = 1.51× 10−8 m2 s−1 for acetone andk = 1.548 and
D12 = 1.22× 10−8 m2 s−1 for phenol. The values obtained
by the moment method, calculated fromEqs. (38) and (39),
are also shown inFig. 3 as “×”.

The error contours for increasingua by 1 and 2% are
shown inFig. 4. Thek andD12 values minimizing the error

Table 2
The best fitted values for the velocity ofua,meas, 1.01× ua,meas and 1.02× ua,meas for the response curves inFig. 2 and their parameter sensitivity toua

ua (10−3 m s−1) k D12 (10−8 m2 s−1) �k/k (%) �D12/D12 (%)

Acetone 8.84 0.04816 1.505 – –
8.93 0.05884 1.577 22 4.8
9.02 0.06951 1.650 44 9.6

Phenol 8.84 1.5483 1.218 – –
8.93 1.5743 1.240 1.7 1.8
9.02 1.6002 1.262 3.4 3.6
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Fig. 3. Error contour map in the plot ofD12 vs. k for data inFig. 2 at the
measured velocityua,meas= 8.84×10−3 m s−1 for: (a) acetone; (b) phenol.
The dot shows the best-fit point:k = 0.0482 andD12 = 1.51×10−8 m2 s−1

for acetone andk = 1.548 andD12 = 1.22 × 10−8 m2 s−1 for phenol;
“×” shows that obtained by the moment method.

are shown inTable 2for eachua. These figures suggest that it
is not possible to determine all three parametersk, D12, and
ua simultaneously; however,k and D12 can be determined
when the fluid velocity is given, as discussed inSection 3.1.
Parameter sensitivity with respect toua also is shown in
Table 2. The estimated values inTable 2agree well with the
theoretical values given byEqs. (29) and (30).

5.3. Effects of wavelength

Fig. 5 shows the dependence of wavelength from 195 to
355 nm at increments of 4 nm for the same run inFig. 2.
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data in Fig. 2. Contours showε = 0.05, 0.03 and 0.01 from the outer
side. The best-fit values are listed inTable 2.

In principle, parameter values do not depend on the wave-
length, but in reality they do depend on wavelength because
of experimental noise or non-linearity of the detector. Strong
absorbance is preferable against the noise of the detector
signal, but results in a loss of detector linearity. In this study,
wavelengths of 275 nm for acetone and 271 nm for phenol
were chosen to analyze response curves having moderate
absorbance values that resulted in a small fitting error and
constant parameter values around these wavelengths, as has
been discussed in previous reports[22,26].

5.4. Effects of solvent

To examine the influence of solvent on the diffusion of
the solute in the column, several pulses of the neat solvent
were injected immediately after the pulse of the solution.
The solvent pulses passed through the peak of the solute in
the column.Fig. 6(a)shows the response curve measured at
the column exit when three pulses of acetone were injected.
Note that the first peak (#0) of acetone appearing at ca.
1800 s corresponds to the pulse of phenol.Fig. 6(b) and (c)
showk andD12 values obtained from the response curves
passed by several pulses of acetone. Sincek and D12 do
not depend on the number of additional pulses, it can be
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Fig. 5. Effects of wavelength. (a) Absorbance at the peak top of the
response curve;k (b), D12 (c) and rms errorε (d) for the same run in
Fig. 2 at each wavelength from 195 to 355 nm at increments of 4 nm:
(�) acetone; (�) phenol.

concluded that the diffusion of phenol in the column is not
affected by the solvent.

5.5. Effects of secondary flow

Fig. 7 shows the effect of flow rate on the measuredk
and D12 values in terms ofDe Sc1/2, where the measured
parameters are denoted byk′ andD′

12 and the leveled-off
values byD12, andDe andScare the Dean and the Schmidt
number, respectively. The flow rates do not affect retention
factors, but doD12 values, as shown inFig. 7(a). The er-
ror in D12 ascribed to secondary flow due to column coiling
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times of the acetone pulses, where zero in thex-axis designates the
injection of phenol dissolved in acetone.

is less than 1%[25] by the criterionDe Sc1/2 < 8 with an
uncoated capillary column. But the effect was not clarified
with a coated column. Recently, the authors[28] report that
the retention factor is not influenced by secondary flow and
the effect on the binary diffusion coefficient with a coated
capillary column becomes small for large retention factors.
In fact, as shown inFig. 7(b), D12 for phenol is less influ-
enced by secondary flow than that for acetone. Although the
criterion can be relaxed with a coated capillary column, the
flow rate for the measurement was restricted toDe Sc1/2 < 8
in this study.

5.6. Infinite dilution for binary diffusion coefficients

Fig. 8plots the effect of different phenol column-loading
amounts on determined values and rms error. Since ab-
sorbance of the response curve decreases in proportional to
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Fig. 7. Effects of the secondary flow on apparentk′ (a) and the ratio of
apparentD12

′ to the leveled-offD12 value (b), measured at 313.15 K and
17.87 MPa: (�) acetone; (�) phenol.

the amount of phenol, a smooth response curve cannot be
obtained at extremely low injected amount. When a noise
elimination procedure is used, a signal can be extracted by
removing high frequency noises from an observed signal
[29]. As shown in this figure, for injected amounts from
0.0003 to 0.06�mol, D12 values are nearly constant, and
no dependence of solute concentration on theD12 values is
observed. When amounts of phenol injected are lower than
10−3 �mol, fitting errors are larger because the noise signals
are competitive with the original signal. After noise elimina-
tion treatment, however, theD12 data become consistent with
the value for injected amounts from 0.0003 to 0.06�mol.
Thus, theD12 values obtained for injected phenol amounts
lower than 10−1 �mol can be considered at infinite dilution.
TheD12 data for phenol in present and previous studies[21]
were measured in this range. Note that maximum phenol
concentration at the detector among the data plotted inFig. 8
(4.9�mol) is 3.1× 10−4 in mole fraction, much lower than
the solubility of 0.021 in mole fraction as estimated in the
literature at 309 and 333 K by Van Leer and Paulaitis[30]
and at 333 to 363 K by Garcı́a-González et al.[31].

5.7. Correlation of binary diffusion coefficients

As described in previous studies under supercritical con-
ditions[21], the retention factor is correlated well with fluid
density, and the binary diffusion coefficient with viscosity
well. Fig. 9shows the correlations of: (a)kwith CO2 density;
and (b)D12 with CO2 viscosity. The solid lines show the
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correlation for data obtained with the curve-fitting method.
Fig. 9(c) plots the fitting error. The values by the moment
method are also shown in these figures by “+” and “×” for
acetone and phenol, respectively. As noted (refer to[19]),
the values obtained by the moment method are influenced
directly by experimental errors in the frontal and tailing por-
tions of the response curve, especially for higher moments.
In fact, the retention factors obtained from the first moment
agree well with those obtained by the curve-fitting method.
However, the binary diffusion coefficients from the second
moment deviate from those obtained by the curve-fitting
method.

In Fig. 10(a), D12 values for acetone are compared with
those obtained from the Taylor dispersion method[26,32].
D12 values for phenol are compared inFig. 10(b)with those
obtained from the input–output response technique with an
uncoated capillary column connected after a coated col-
umn, the so-called the modified Taylor dispersion method
[33]. Solid lines indicate the correlations of the present
data, which agree well. This evidence validates the use
of a polymer-coated capillary column for measurements
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of binary diffusion coefficients under supercritical condi-
tions.

6. Discussion

6.1. Effect of surface diffusion

The effect on determined parameter values of the adsorbed
species diffusing on the surface of a polymer film coated
on the column wall due to the concentration gradient is
examined. In this case,Eq. (4) is modified to contain the
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term of surface diffusion as:

k
∂c

∂t
= kDs

∂2c

∂x2
− 2D12

R

∂c

∂r
at r = R (49)

whereDs is the surface diffusion coefficient based on the
adsorbate concentration gradient.

This modification does not influence the zeroth and first
moments, but does influence the second moment. In fact,a
in Eq. (16)should be replaced bya∗ as:

a∗ = D12 + kDs

1 + k
+ 1 + 6k + 11k2

1 + k

R2U2

48D12
(50)

SinceDs is expected to be lower thanD12 and the second
term is dominant inEq. (50), the surface diffusion does not
need to be considered in impulse response measurements
with a coated column.

6.2. Validity of the approximation

The accuracy of the Gaussian-like approximate solution
is estimated byΓ (t) in Eq. (16). In the measurement for
acetone inFig. 2(a), Γ(t)/(2at) ∼= 0.0002–0.0004 for the
range of t = 1700–1900 s, and for phenol inFig. 2(b),
Γ(t)/(2at) ∼= 0.0001–0.0003 fort = 4000–5000 s. The sec-
ond term inΓ (t) of Eq. (16a)is negligible for acetone and
phenol. According toEq. (23), the difference in the diffu-
sion coefficients is smaller than 0.04%, which is smaller
than the accuracy of the parameter as shown inFig. 3. Of
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Fig. 11. Error contour map for the plot ofD12 vs. k for acetone (a) and
phenol (b), based on the modified Golay solution for the same run shown
in Fig. 2: (—) Gaussian-like approximate solution; (– – –) modified Golay
solution.

course, agreement in the first and the second moments does
not always result in identical response curves. Although the
response curve shows a distortion, which is characterized by
the third moment, the Gaussian-like approximate solution
does not express the distortion sufficiently.

Fig. 11 compares the error contour maps between the
modified Golay solution and Gaussian-like approximate so-
lution. Since the error contours for both models coincide as
shown inFig. 11(a), no difference exists between the two
solutions for acetone. However, for phenol inFig. 11(b), k
depends on the model only slightly, butD12 does not depend
on the model at all. While the contour appears to shift hori-
zontally slightly, the values fork andD12 were consistent in
both models (difference of best-fittedk values was 0.03%).
Analysis of the spatial moment revealed that the third mo-
ment of the cylindrical model is positive. However, tailing
results in negative values for the third moment. Therefore,
tailing of the response curves cannot be explained by this
model. As noted by Madras et al.[24], another model must
be introduced to describe the tailing.

The difference betweenCapp and CG is less than 0.6%,
according toEq. (48). In our case, the Gaussian-like ap-
proximate solution well predicted response curves mea-
sured. Consequently,C is approximated byCapp with good
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accuracy. It should be noted that the moment method can-
not assure validity of the models because agreement of the
first and the second moments in the models do not certify
that of response curves predicted by models and measured
experimentally.

6.3. Estimation of diffusion coefficient for weak adsorption

Sincek is very small for acetone, the transport of ace-
tone in a coated column, assumingk = 0 as shown in
Eq. (31), may be equivalent to the Taylor dispersion. For
acetone inFig. 2(a), the error contour map in theU0–D12,0
plane is obtained as shown inFig. 12. According to this er-
ror contour map,U0 = 8.434× 10−3 m s−1 andD12,0 =
1.20× 10−8 m2 s−1 can be determined simultaneously. For
the measurements here, accuracy ofua was estimated as
±1% (Table 1). From Eq. (30), the relative error ofD12 is
estimated as±4.6% when adsorption is considered (assum-
ing k �= 0). In contrast, when adsorption of acetone is ig-
nored (assumingk = 0), the error becomes 20% according
to Eq. (33).

Adsorption of tracer components on the uncoated column
wall occurs especially in the near-critical region, even for
weak polar compounds such as naphthalene[15]. Despite the
weak adsorption, it cannot be ignored for the determination
of diffusion coefficients when the value of the relative error
of Eq. (33)is not negligible. In the Taylor dispersion by both
the curve-fitting and the moment method, the measurement
of solvent flow velocityua is not required for determining
D12 values. However, the impulse response method with a
polymer-coated column by the curve-fitting method requires
the determination ofua as accurately as possible to determine
k andD12 because the sensitivity forD12 is nearly five-fold
larger than that forua when k is small. Although a more
experimental burden in theua measurement is needed with
a polymer-coated column, the effect of solute adsorption on

the inner wall of the column onD12 value can be reduced
significantly. Therefore, diffusion coefficient measurements
with a coated capillary column possess an advantage over
those by the Taylor dispersion when determining diffusion
coefficients, unless adsorption is negligible.

6.4. Effect of determination error of column radius

The accurate radius and length of the diffusion column
are essential in the determination of binary diffusion coeffi-
cients. However, column radius may be difficult to measure.
In this section, the effect of determination error of column
radius on the parameter values is examined.

For a single run,U and a can be obtained from the
curve-fit, and the flow rate,πR2ua, is measured. By differ-
entiatingU = constant,a = constant andR2ua = constant,
the sensitivities toR are:
R

k

dk

dR
= −2(1 + k)

k
(51)

R

D12

dD12

dR
∼= − 8(1 + 4k)

1 + 6k + 11k2
(52)

whereEq. (52) is derived withEq. (8). When k is small,
the D12 error is almost eight times as large as that ofR.
As k becomes larger, however, theD12 error decreases. The
column radius should be measured as accurately as possible
for measurements with smallk values.

In the Taylor dispersion method,U0 anda0 are given from
the measurement. Then,

R

D12

dD12

dR
∼= 2 (53)

Thus, theD12 error is twice as large as that ofR. Conse-
quently, the more accurate measurement ofR is required in
the chromatographic impulse response method than in the
Taylor method. In contrast, whenk is large, the relativeD12
error is small. This results in the advantage of the chromato-
graphic impulse response method over the Taylor disper-
sion method. For instance, whenk > 1.2, (�D12/D12) <

2(�R/R).

6.5. Measurements in the near-critical region

Recently, critical anomalies in diffusion coefficients mea-
sured by the Taylor dispersion method have been reported
[34–36]. However, Levelt Sengers et al.[37] reported diffi-
culty in obtaining measurements in the near-critical region
by the Taylor dispersion method.

As mentioned earlier, adsorption of a solute on a column
wall may occur in the near-critical region[15]. This effect is
reduced in the chromatographic impulse response method as
compared with the Taylor dispersion method. When the ve-
locity of a supercritical fluid has a parabolic profile, measure-
ments obtained by the chromatographic impulse response
method are reliable even in the near-critical region. How-
ever, the measurements are based on assumptions such as
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a constant supercritical fluid velocity and independence of
the diffusion coefficient and retention factor from concen-
tration. These assumptions, which are true far from the crit-
ical points, have not been verified in the near-critical region
because large negative values of partial molar volumes for
solutes have been reported. Since the barycentric motion
significantly affects the mass transfer in the critical region,
as noted by Clifford and Coleby[38], the further studies are
needed for measurements in flowing systems such as in the
chromatographic impulse response method as well as the
Taylor dispersion method.

6.6. Boundary condition used by Lai and Tan

Lai and Tan[18] employed the following condition instead
of Eq. (11):

C′
app =

( m

πR2

) δ(t)
ua

at x = 0 (54)

The Gaussian-like approximate solution is obtained from
Eqs. (9), (10), and (54)as:

C′
app(x, t)=

( m

πR2

) x

uat

1√
4πat

exp

{
− (x− Ut)2

4at

}
for x, t > 0 (55)

and the temporal moments atx = L are expressed as:

t̄′ = L

U
(56)

σ′2 = 2

(
L

U

)2
a

LU
(57)

The value ofa/(LU) is much smaller than unity under their
experimental conditions as well as under the present condi-
tions; for example,a/(LU) = 6× 10−5 in case ofFig. 2(a).
Although Eq. (54)does not appear to represent the exper-
imental conditions, the difference in measuredk and D12
values caused by differences in initial conditions between
Eqs. (11) and (54)is negligible under these experimental
conditions.

7. Conclusions

The Gaussian-like approximate solution based on a linear
and equilibrium adsorption isotherm was shown effective
and accurate for determining binary diffusion coefficients
and retention factors for highly viscous liquids or solids
in supercritical fluids from response curves obtained by
the chromatographic impulse response technique with a
polymer-coated capillary column using curve fitting. The
sensitivities ofD12 and k to average fluid velocityua was
derived from the Gaussian-like approximate solutions.
Moreover, the Golay equation was modified to allow agree-
ment of the third moment with that of the cylindrical model.

The tailing of the response curves cannot be explained by
linear and equilibrium adsorption from the third moment.

The applicability of the Gaussian-like approximate solu-
tion was experimentally demonstrated with a poly(ethylene
glycol)-coated capillary column using phenol dissolved in
acetone injected into a laminar flow of supercritical carbon
dioxide at 313.15 K and 11.6–28.6 MPa. By comparing mea-
sured and calculated response curves for both phenol and
acetone individually, infinite-dilution binary diffusion coef-
ficients and retention factors for both compounds were deter-
mined simultaneously for each injection when fluid velocity
was measured experimentally. The binary diffusion coeffi-
cients determined for acetone and phenol agreed with those
for each compound separately as reported in the literature.

Reliability of the parameter values was examined by
error-map analysis of the response curves. Potential errors
were evaluated by considering the compatibility of the
measured curves with the predicted ones. The effects of
wavelength and secondary flow on the determined values
are discussed. The system was at an infinite dilution, which
was confirmed by injecting solutions at different concen-
trations over a wide range of solute quantities. To examine
the effect of an organic solvent (acetone) on the determined
binary diffusion coefficients, several pulses of acetone were
injected to the diffusion column immediately after the in-
jection of phenol dissolved in acetone. Whereas the acetone
pulses passed the phenol peak, the solvent (acetone) did
not affect the determined binary diffusion coefficients for
phenol.

Concerning error ascribed to uncertainty in diffusion col-
umn diameter, the more accurate measurement is required
in the chromatographic impulse response method than in
the Taylor dispersion method whenk is small, i.e., for low
and non-polar compounds. In contrast, whenk is large, i.e.,
for polar and/or large molecular compounds, the chromato-
graphic impulse response method is more suitable than the
Taylor dispersion method because the relativeD12 error is
smaller.

8. Nomenclature

a, a0, a∗ defined byEqs. (7a), (31a) and (50),
respectively (m2 s−1)

A defined byEq. (46)
b, b∗ defined byEqs. (7b) and (42),

respectively (m)
B defined byEq. (47)
c(r, x, t) tracer concentration in cylindrical column

(mol m−3)
C(x, t) cross-sectional average concentration,

defined byEq. (6)(mol m−3)
Capp(x, t) Gaussian-like approximate solution,

given byEq. (12)(mol m−3)
Ĉapp(t) normalized concentration atx = L, defined

by Eq. (24)(s−1)
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Ĉapp,0(t) normalized concentration atx = L based
on the Taylor dispersion, defined
by Eq. (31)(s−1)

CG(x, t) cross-sectional average concentration given
by the Golay equation (Eq. (7)) (mol m−3)

Cmeas(t) impulse response curve experimentally
measured atx = L (mol m−3)

Ĉmeas(t) normalized impulse response curve
experimentally measured atx = L, defined
by Eq. (26a)(s−1)

D12 binary diffusion coefficient (m2 s−1)
D′

12 apparent binary diffusion coefficient
including secondary flow effect (m2 s−1)

D12,0 binary diffusion coefficient based on the
Taylor dispersion (m2 s−1)

Ds surface diffusion coefficient (m2 s−1)
De Dean number (=(2Ruaρ/η)

√
R/Rcoil)

I0(x), I1(x) modified Bessel functions of the first kind of
zeroth and first order, defined by
Eqs. (B.9a) and (44c), respectively

J0(x), J1(x) Bessel functions of the first kind of zeroth
and first order, respectively

k retention factor for polymer layer to
supercritical fluid

k′ apparent retention factor including secondary
flow effect

L distance between the injection and
detecting points (m)

m total amount of tracer input (mol)
r radial distance variable (m)
R column radius (m)
Rcoil coil radius (m)
Sc Schmidt number (=η/(ρD12))
t time (s)
t̄ mean residence time, defined byEq. (34)(s)
ua average fluid velocity (m s−1)
U =ua/(1 + k) (m s−1)
U0 fluid velocity based on the Taylor

dispersion (m s−1)
x axial distance variable (m)
z axial distance variable on the moving

coordinate, defined byEq. (7c)(m)

Greek letters
Γ (t) the residual part of the second moment,

defined inEq. (16)(m2)
δ(t), δ(x) Dirac’s delta functions (s−1 and m−1,

respectively)
ε, εapp rms error defined byEqs. (26) and (45),

respectively
η viscosity (Pa s)
Λ(t) defined inEq. (20)
λn nth positive root ofEq. (16b)
Ξ(t) defined inEq. (41)(m3)
ρ density (kg m−3)

σ2 second-order temporal moment, defined
by Eq. (35)(s2)

φ angular variable

Superscripts
(n) nth order spatial moment with respect toz
– overall cross-sectional average, defined as

total quantity of solute both in fluid and in
polymer phase per cross-sectional area
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Appendix A. Spatial moments for capillary column

The angular variableφ is eliminated for convenience in
this appendix. Transferring the space variablez from x,
Eqs. (1)–(5)are written as:

∂c

∂t
= D12

{
1

r

∂

∂r

(
r
∂c

∂r

)
+ ∂2c

∂z2

}
− u(r)

∂c

∂z
+ U

∂c

∂z
(A.1)

k

(
∂c

∂t
− U

∂c

∂z

)
= −2D12

R

∂c

∂r
at r = R (A.2)

∂c

∂r
= finite atr = 0 (A.3)

c = 0 atz = ±∞ (A.4)

c =
( m

πR2

) δ(z)

1 + k
at t = 0 (A.5)

where

u(r) = 2ua

{
1 −

( r
R

)2
}

(A.5a)

Using thenth spatial momentc(n)(r, t) defined byEq. (13),
Eqs. (A.1)–(A.5)become:

∂c(n)

∂t
=D12

1

r

∂

∂r

(
r
∂c(n)

∂r

)
+ n(n− 1)D12c

(n−2)

+ nu(r)c(n−1) − nUc(n−1) (A.6)

k

(
∂c(n)

∂t
+ nUc(n−1)

)
= −2D12

R

∂c(n)

∂r
at r = R (A.7)

∂c(n)

∂r
= finite atr = 0 (A.8)
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c(0) = 1

1 + k

( m

πR2

)
c(n) = 0 for n �= 0


 at t = 0 (A.9)

The cross-sectional average ofc(n)(r, t) is defined by:

C(n)(t) = 2

R2

∫ R

0
c(n)(r, t)r dr (A.10)

And the overall cross-sectional averageC̄(n)(t) is defined as
the average of the total quantities both dissolved in the fluid
and absorbed on the wall:

C̄(n)(t) = C(n)(t)+ kc(n)(R, t) (A.11)

From Eqs. (A.6)–(A.9), the equations forC̄(n)(t) can be
derived as:

dC̄(n)

dt
= −nUC̄(n−1) + n(n− 1)D12C

(n−2)

+ n
2

R2

∫ R

0
u(r)c(n−1)(r, t)r dr (A.12)

C̄(0) = m

πR2

C̄(n) = 0 for n �= 0


 at t = 0 (A.13)

For the zeroth moment,Eqs. (A.12) and (A.13)with n = 0
give:

C̄(0)(t) = m

πR2
(A.14)

andEqs. (A.6)–(A.9)can also be solved

c(0)(r, t) = C(0)(t) = 1

1 + k

( m

πR2

)
(A.15)

For the first moment,Eqs. (A.12) and (A.13)give:

C̄(1)(t) = 0 (A.16)

andEqs. (A.6)–(A.9)with n = 1 are solved as:

c(1)(r, t)= R2uac
(0)

4D12

[{
1

2

( r
R

)4 − 1 + 2k

1 + k

( r
R

)2

+ 2 + 8k + 9k2

6(1 + k)2

}
−

∞∑
n=1

AnJ0

(
λn
r

R

)

× exp

(
−λ2

n

D12t

R2

)]
(A.17)

whereλn is the nth positive root ofEq. (16b)and An is
determined as:

∞∑
n=1

AnJ0

(
λn
r

R

)
= 1

2

( r
R

)4 − 1 + 2k

1 + k

( r
R

)2

+ 2 + 8k + 9k2

6(1 + k)2
(A.18)

Cross-sectional average ofc(1)(r, t) is calculated from
Eq. (A.17)as:

C(1)(t)= R2uac
(0)

4D12

[
k(1 + 4k)

6(1 + k)2
+ k

∞∑
n=1

AnJ0(λn)

× exp

(
−λ2

n

D12t

R2

)]
(A.19)

SinceC(1) = 0 at t = 0, we obtain:
∞∑
n=1

AnJ0(λn) = − 1 + 4k

6(1 + k)2
(A.20)

In order to obtainAn, integrateEq. (A.18) multiplied by
{J0(λmr/R)(r/R)} in the range ofr = 0–R:(

1 + k2

4
λ2
m

)
AmJ0(λm)− k

∑
n�=m

AnJ0(λn)

= −32(1 + k)

λ4
m

+ k(1 + 4k)

6(1 + k)2
(A.21)

ConsideringEq. (A.20), Am is given as:

Am = − 32

λ4
mJ0(λm)

1

1 + (k2/(4(1 + k)))λ2
m

(A.22)

For the second moment, fromEq. (A.17):

2

R2

∫ R

0
u(r)c(1)(r, t)r dr

= R2ua
2c0

2D12

[
1 + 6k + 11k2

24(1 + k)2
+ 4(1 + k)

∞∑
n=1

AnJ0 (λn)

λ2
n

× exp

(
−λ2

n

D12t

R2

)]
(A.23)

In case ofn = 2, integratingEq. (A.12)with A.13, Eq. (16)
can be obtained.

FromEqs. (A.6)–(A.9), c(2)(r, t) can be expressed as:
c(2)(r, t) = 2ac(0)t + g2(r)+ h2(r, t) (A.24)

where

g2(r)= R2c(0)

4

[
k

1 + k

{
−2

( r
R

)2 + 1 + 2k

1 + k

}
+ R2u2

a

D12
2

×
{

1

32

( r
R

)8 − 5

36

1+2k

1 + k

( r
R

)6 +5 + 20k + 21k2

24(1 + k)2

×
( r
R

)4 − (1 + 3k)(1 + 3k + 4k2)

8(1 + k)3

( r
R

)2

+ 3 + 24k + 86k2 + 208k3 + 251k4

288(1 + k)4

}]
(A.25)

and h2(r, t) is a function such that limt→∞ h2(r, t) = 0.
FromEqs. (A.12) and (A.13)with n = 3, we obtain:

dC̄(3)(t)

dt
= k(1 + 4k)

2(1 + k)2
R2uac

(0)

+ 1 + 10k + 44k2 + 122k3 + 177k4

(1 + k)4

× R4ua
3

480D12
2

+G3(t) (A.26)
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where G3(t) is a function such that limt→∞G3(t) = 0.
Therefore,Eq. (41)can be obtained.

Appendix B. Analytical solution of the Golay’s equation

The Golay’s equation is classified into the telegrapher’s
equation, and has already been solved (refer to[39]). How-
ever, the process was not familiar to us. In this appendix,
the Golay’s equation is solved using a fundamental method
for the linear partial differential equation.

Eq. (7)should be solved under the conditions ofEqs. (10)
and (11), whereCapp is replaced byCG, in the regiont >
0 and−∞ < z < ∞. For convenience, we set(1/(1 +
k))(m/πR2) = 1. First, we transform the equations into a
normal form:

With the following variables:

CG(z, t) = exp

(
− z
b

− 2a

b2
t

)
F(z, t) (B.1)

ξ = z−
√
a2 + b2 − a

b
t (B.2)

χ = z+
√
a2 + b2 + a

b
t (B.3)

and the notationF(z, t) = f(ξ, χ), Eqs. (7), (10), and (11),
respectively, become:

∂2f

∂χ2
− ∂2f

∂ξ2
= αf (B.4)

exp

[
− 1

2b
{(1 + b2α)ξ + (1 − b2α)χ}

]
f(ξ, χ) = 0

at (ξ, χ) = ±(∞,∞) (B.5)

f(λ, λ) = δ(λ) (B.6)

where

α = a

b2
√
a2 + b2

(B.6a)

The regiont > 0 on the (z, t)-plane corresponds to the region
χ > ξ on the (ξ,χ)-plane.

Let g(ξ, χ) be a solution ofEq. (B.4)whose value is unity
on the characteristic curvesχ−q = ±(ξ−p). Selecting the
variableω =

√
(χ− q)2 − (ξ − p)2 and settingg(ξ, χ) =

G(ω), we obtain:

d2G

dω2
+ 1

ω

dG

dω
= αG (B.7)

G(0) = 1 (B.8)

The solution in the region(χ − q)2 ≥ (ξ − p)2 can be
expressed using the modified Bessel function of first kind
and zeroth order as:

G(ω) = I0(
√
αω) (B.9)

O ξ

χ

Γ2

Γ1

Γ4

Γ3

∆

)
2

,
2

(
qpqp ++

)
2

,
2

( 0000 qpqp ++

),( 00 qp

),( qp

Fig. 13. Closed curve for integration.

where

I0(w) =
∞∑
n=0

1

(n!)2

(w
2

)2n
for w ≥ 0 (B.9a)

For sufficiently large ω, according to the asymptotic expan-
sion for the modified Bessel function (for example, see [27]):
In(w) → exp(w)/

√
2πw for w → ∞, we obtain:

G(ω) → exp(
√
αω)

α1/4
√

2πω
for ω → ∞ (B.10)

dG(ω)

dω
→ α1/4exp(

√
αω)√

2πω
for ω → ∞ (B.11)

As shown in Fig. 13, take a point (p, q) on (ξ, χ)-plane
(assume p < q).

Let Γ 1 be the directed line segment from the point ((p+
q)/2, (p+q)/2) to the point (p, q), Γ 2 the segment from (p,
q) to (p0, q0) (assume p−q = p0−q0), Γ 3 the segment from
(p0, q0) to ((p0 + q0)/2, (p0 + q0)/2) and Γ 4 the segment
from ((p0 + q0)/2, (p0 + q0)/2) to ((p+ q)/2, (p+ q)/2).
In addition, let Γ 0 be the closed loop composed of Γ 1, Γ 2,
Γ 3 and Γ 4, and ∆ be the domain surrounded by Γ 0.

From Eq. (B.4) for f(ξ,χ) and g(ξ, χ) = G(ω):

∂

∂ξ

(
g
∂f

∂ξ
− f

∂g

∂ξ

)
− ∂

∂χ

(
g
∂f

∂χ
− f

∂g

∂χ

)
= 0

Applying the Gauss’ divergence theorem to the above on the
domain ∆:∫∫

∆

{
∂

∂ξ

(
g
∂f

∂ξ
− f

∂g

∂ξ

)
− ∂

∂χ

(
g
∂f

∂χ
− f

∂g

∂χ

)}
dξ dχ

=
∫
Γ0

{
g

(
∂f

∂χ
dξ + ∂f

∂ξ
dχ

)
−f

(
∂g

∂χ
dξ+∂g

∂ξ
dχ

)}
= 0

Dividing the path of the integral into the Γ 1, Γ 2, Γ 3 and
Γ 4, we can rewrite the above equation as:∫
Γ1

+
∫
Γ2

+
∫
Γ3

+
∫
Γ4

= 0 (B.12)

From dχ = −dξ and g = 1 on Γ 1,
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∫
Γ1

= −
∫
Γ1

d(fg)+ 2
∫
Γ1

f dg

= −f(p, q)+ f

(
p+ q

2
,
p+ q

2

)
(B.13)

Similarly, from dχ = dξ and g = 1 on Γ 2, dχ = −dξ on
Γ 3, and χ = ξ and g((p+ q)/2, (p+ q)/2) = 1 on Γ 4:∫
Γ2

= −
∫
Γ2

d(fg)− 2
∫
Γ2

f dg = f(p0, q0)− f(p, q)

(B.14)

∫
Γ 3

= f(p0, q0)− f

(
p0 + q0

2
,
p0 + q0

2

)

× g

(
p0 + q0

2
,
p0 + q0

2

)
+ 2

∫
Γ 3
f dg (B.15)

∫
Γ 4

= f

(
p+ q

2
,
p+ q

2

)
− f

(
p0 + q0

2
,
p0 + q0

2

)

× g

(
p0 + q0

2
,
p0 + q0

2

)

− 2
∫ (p+q)/2

(p0+q0)/2
f(λ, λ){gξ(λ, λ)+ gχ(λ, λ)}dλ

(B.16)

When p0, q0 → −∞, we obtain f(p0, q0) → 0 from
Eq. (B.5) since 1−b2α > 0. Moreover, from Eqs. (B.5) and
(B.10), we obtain f(p0, q0)g(p0, q0) → 0. And∫
Γ 3
f dg=

∫ (q−p)/2

0
f(p0 + λ, q0 − λ){gξ(p0 + λ, q0 − λ)

+ gχ(p0 + λ, q0 − λ)}dλ

=
∫ (q−p)/2

0
f(p0 + λ, q0 − λ)

×
[

dG

dω

(χ− q)+ (ξ − p)

ω

]
ξ=p0+λ
χ=q0−λ

dλ → 0

Therefore, Eq. (B.12) reduces to:

f(p, q)= f

(
p+ q

2
,
p+ q

2

)
−
∫ (p+q)/2

−∞
f(λ, λ){gξ(λ, λ)

+ gχ(λ, λ)}dλ (B.17)

From the boundary condition in Eq. (B.6), when p+ q > 0:

f(p, q)= −{gξ(0, 0)+ gχ(0, 0)}
= q− p√

q2 − p2

√
αI1(

√
α(q2 − p2)) (B.18)

Exchanging the variable from (p, q) to (ξ, χ), using:
Eqs. (B.1)–(B.3) and multiplying (1/(1 + k))(m/(πR2)),
we obtain Eq. (44) where b is replaced by b∗. Note that
ζ + τ > 0 holds for x, t > 0 because:

ζ + τ = x

b
+ t

b

{
1 + 3k

2k(1 + 4k)
ua + D12

(1 + k)b

}
(B.19)
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