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Abstract

The theoretical basis of a Gaussian-like approximate solution was applied to a chromatographic impulse response technique with curve
fitting for measuring binary diffusion coefficients and retention factors using a polymer-coated capillary column. The formulae were derived
for evaluating both the accuracy of the approximate solution and the sensitivity of the parameters. The validity of the solution also was
confirmed experimentally for pulse injection of phenol in acetone into supercritical carbon dioxide flowing at 313.15K and 11.6-28.6 MPa.
Potential sources for experimental errors of the method are discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and the effect of the dissolving solvent on diffusion coeffi-
cients is not clear in the latter case. When a capillary column
Transient response techniques have been employed foicoated with a polymer film on the inner wall is employed,
determining transport properties of fluids such as diffusion a certain amount of highly viscous liquid or a solid solute
coefficients and thermal conductivities. Binary diffusion co- dissolved in an organic solvent can be loaded. Since the so-
efficients in supercritical fluids were measured mainly by the lute and organic solvent are chromatographically separated
Taylor dispersion methofl,2], which is a type of impulse  in the column, the effect of the solvent can be eliminated.
response technique. Although a large number of studies on Lai and Tan[18] employed a polymer-coated diffusion
binary diffusion coefficients in supercritical carbon dioxide column for the measurements of binary diffusion coefficients
have been reported (refer {8,4]), few data exist for useful  and retention factors, which were analyzed by the moment
compounds with relatively high molecular weights. method. While this method does not require the analytical
A low viscous liquid, i.e., low molecular weight com- solution of the fundamental differential equationgqg. (1)
pound, can be easily input as a pulse into a solvent streamit has been noted that small errors in the frontal and the
through an ordinary HPLC injector. However, highly viscous tailing portions of the response signals are unduly weighted
or solid solutes, which often have relatively high molecular (refer to[19]). Moreover, the validity of the model cannot
weights, are difficult to inject. Thus, the solute is injected be judged by this method because the degree of the fit of
as a solution in a supercritical flu[8—14] or other solvent  the calculated response curve to that measured experimen-
(such as hexanfl5,16] and isooctang¢l7]) having essen- tally cannot be evaluated directly. Although the curve-fitting
tially no UV absorption because a UV detector is commonly method overcomes these drawbacks, it requires analytical
employed. Both choices possess some drawbacks: adjustingxpression of the response curve.
the amount of the input solute is difficult in the former case,  For linear and equilibrium adsorption occurring on and/or
in a polymer film coated on the column wall, Gol§30]
mspondmg author. Tels81-45-339-4396: derived an .approximate equation for.cross—.segtional average
fax: +81-45-339-4396. concentration based on the quadratic profile in the column.
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binary diffusion coefficients and retention factors for highly ac
viscous and solid compounds in supercritical carbon dioxide 5,
with a Gaussian-like approximate solutif#28].

The severe distortion and/or tailing of the response curves,

mainly caused by the strong solute polarity, cannot be rep-here D, is the binary diffusion coefficient of the tracer
resented by the Gaussian-like approximate solution to a lin- component in the fluidR the column radiusy, the average
ear and equilibrium adS(_)rption isotherm. Although Ma_dras fluid velocity, t the time, and, ¢ andx the radial, angular

et al. [24] have determined from numerical calculations 5ng axial variables, respectively. On the inner wall coated
that non-equilibrium adsorption causes tailing of response \ith an adsorbent, the following boundary condition is given
curves in the Taylor dispersion measurements, tailing for yith the assumption that an adsorption isotherm is linear and

most solutes, except for those strong polar compounds suche tracer component instantaneously reaches equilibrium
as solutes with carboxyl groups, is not significant with a panveen the fluid and adsorbent on the wall:
polymer-coated capillary column. Thus, we can assume that 3 2D 8

C 12 oC

the partitioning of a solute between the polymerandthe su-y— = _ =22~ 4ty = R (4)

percritical phases behaves as a linear and equilibrium ad- ot R or

sorption isotherm unless the solute is strongly polar and/or wherek is the retention factor, also called the partition ratio

unless the concentration is high. or capacity factor. Assuming that the tracer component at-
As mentioned earlier, the impulse response method with tains equilibrium on the wall at = 0, initial condition for

a polymer-coated capillary column is amenable to measure-the pulse input can be written as:

ment of binary diffusion coefficients and retention factors

for various solutes having low to medium polarity over a = l) &)

wide range of molecular weights. This method is applicable mR?) 14k

to the analysis of transport phenomena in various thermo-wheremis the injected amount of tracer.

dynamic measurements and to processes involving chemical According to the symmetric concentration profile around
reactions and separations such as supercritical fluid extracthe x-axis for initial condition ofEq. (5) c is a function of

tion and chromatography. However, the theoretical basis isy, x andt. Although ¢ is eliminated later, the inclusion gf
not well understood. Thus, our objective is to provide a the- at this point is practical.

oretical basis for the CUrVe'ﬁtting method when determining In most experimentS, average concentration over the

binary diffusion coefficients and retention factors from im- cross-section of a column is measured by a UV dete€tor.

pulse response measurements with a polymer-coated capilis the cross-sectional average concentration:
lary column. In addition, we demonstrate experimentally the

validity of this method. From a single injection of a solid Clx, 1) = E/Rc(r x, rdr (6)
solute dissolved in an organic solvent (for example, phenol R2 [y 7T

in acetone), the simultaneous determination of binary diffu-
sion coefficient and retention factor was accomplished for
both solute and solvent. Finally, we examine the effects of
the solvent (acetone) on parameters of the solute (phenol)
by multiple injections of the solvent soon after loading the
tracer solution into the diffusion column.

=finite atr=0 (2)

c=0 atx==o00 3)

atr=0 (5)

We call this model the cylindrical model. Because it is dif-
ficult to obtain the analytical expression f0r we derive an
approximate solution fo€ in Section 2.2

2.2. Gaussian-like approximate solution

By assuming thatc(r, x, 1) — C(x, t)| < C(x,t), Golay
[20] derived an approximate equation forfrom Egs. (1),

2. Prediction of impulse response curve (2) and (4)
2.1. Linear adsorption model Ce _ a32CG _ b32CG )
ot 972 0z ot
When a tracer component is pulse-injected into a fully
) . g where
developed laminar flow in a cylindrical column, and the
assumption that the physical properties are constant during _ D1z 1+6k+ 11k? R?U? (72)
each measurement can be made, the tracer concentration = 1 4+ k 1+k 48D1>
c(r, ¢, x, 1) is described af2,25]: ,
k(1+4k) R°U
2 2 = a4 (7b)
ac 10 oc 18c+ac 1+k 24D1»
= = 2 (= - - 7"
o~ P rar Uor) T 2092 T a2 L= Ut (70)
r\2] dc
— — | — — u
Z”a{l () } ox Wy e (7d)

1+k
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It should be noted that the second ternEof. (7a)is domi-
nant. If the first term is significant, we need not make mea-
surements in a flowing system. Therefore, in this paper, we
consider the following condition:

R2U?
5 8
48D17
Practically, this assumption is valid for supercritical and lig-
uid solvents.

Forb = 0, we obtain the following approximate equations
for C:

(1+ 6k + 11k%) >1

3Capp  0°Capp
= 9
ot ¢ 072 ®)
m 8(2)
Camm=(70) 13 =0 (1)
Egs. (9)—(11)xan be solved as:
m 1 (x — Ut)2 }

Capp(x, ) = | —5 expy —

app(*: 7 (nR2) (1+ k)v/4rat p{ dat

forx,t>0 (12)

Capp|s the Gaussian-like approximate solution. As d|scussed
in Section 3 a simple analytical expression enables the the- "
oretical evaluation of parameter sensitivity.

2.3. Accuracy of approximation

The validity of the approximation fror@ to Cypp can be
examined by comparing spatial moments, as j&jsid for
the Taylor dispersion. Using the space variabtiefined in
Eqg. (7c)instead ofx, thenth spatial central moment afis
defined as:

o

= /

The overall cross-sectional average concentratith, de-
fined as the total amount of solute both in fluid and in poly-
mer phase per cross-sectional area, is given by:

c(r,z, 7" dz (13)

e @]

- 2 R
C™) =— f ™ (@, yr dr 4+ k™ (R, 1) (14)
R%Jo

Then, the first and the second moments are givelbdsy (15)
and (16)(seeAppendix A):

cPm =0 (15)
c® 0]
=0 = 2at— I'(r) (16)
where
1+ 8k 4 (97/4)k? + (57/2)k> R*U?
o= 2 2
(1+k) 360D12
1281+ 0PRUP N exp(—A2(D12/ RA))
D12 A8{1+ (k2/(4(1 + K)))»2}

(16a)
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An IS thenth positive root of the following equation:
2J1(A) + kado(h) =0 (16b)

andJo(1) andJ;(1) are the Bessel functions of the first kind
of order 0 and 1, respectively.

On the other hand, the overall cross-sectional average of
the Gaussian-like approximate soluticffhpp is given as:

Capp(x, t) = (14 k) Capp(x, 1) 17)

Then, the first and the second spatial moments are:

Capp )(f) = (18)
2)

Capp ™) _ 50 (19)

Capp©

Since the first terms in the RHS &fgs. (16) and (19are
identical, the residual term ikq. (16) —I(¢), can be con-
sidered as an index of the accuracydafp The second term
in the RHS ofEq. (16a)is roughly approximated by the first
term of the summatiom(= 1). In fact, by definingA(t) as:
o eXp(—25(D12/ R?)1)
—A8{1+ (k2/(41+ 0))AZ)

exp(—r2(D12/ R?)1)

= A1) 20
T 31+ (/41 + 0))2A3) (20)
A(t) can be estimated as unity because:
1< A() <1+ Z 1
5 (o /A1)8
N =1 718 -
= Zﬁ = 9250 = 10041 (21)

Note thatig, < A1 < A1,, Whereig, and iy, are thenth
positive roots ofJg(A) = 0 and Ji(A) = O, respectively.
Fig. 1 showsa; for variousk values. The second term in
() usually is smaller than the first.

4 T
)\ll
—
<
}\Ol
2 | Ll Ll L
0.01 0.1 1 10 100
k

Fig. 1. A1 vs. k. Broken lines show.p; = 2.40483 andr1; = 3.83171,
corresponding to the first positive zero pointsJgfx) and Ji(x), respec-
tively.
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Elimination of the residual terms iRqg. (16)is compen-
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obtained by solvingegs. (7a) and (7dyinder condition of

sated for by changing the parameter values of the first termEq. (8) as follows:

as 4a + Aa)t. Therefore,
Aa 120

o 2at

In Eq. (22) whenD12 varies andk does not, eliminating the
first term inEq. (7a)provides:
AD1p  I(D)

D1 2at

(22)

(23)

3. Parameter determination by curve fitting
3.1. Curve fitting in the time domain

When relative fluid concentration is measured, the nor-
malized concentratiorGapp Which reduces the area equal
to unity in the time intervaltp, to], is used. FromEq. (12)
atx = L:

(1//Aratyexp—(L — Ut)2/(4at)}

C =
woel0 2(1//Amatexpi—(L — Ut)2/(4at)bdr

24)

Theoretically a whole time region [60) may be used, which
is represented by:

CapplL.) U exp{
Jo¥ CapplL, dt — /Amat

éapp(t) =

(L — Ut)?
© dat }

(25)

Practically, however, the time region may be restricted within

the reliable range to avoid experimental error. For example

[21,26] t; andt; are chosen at 10% of the frontal and the

latter peak height of the measured curve, respectively.
The measured and normalized response cu@@gas(t),

are compared with the calculated cun@gsy(7). The degree

of fit can be estimated in terms of the root-mean-square

(rms) error defined b¥qg. (26)

|:fttlz{émeas(l) - a‘.'slpp(l)}zdf:|1/2 (26)
&= ~
Ji2{Crmeadn)}2di
where
- Cmead?)
C = 26
mendl) S el (262)

Parameter values are determined by minimizing esrdihe
unknown parameters of this system &réD12 andu,. Be-
cause the same values dfand a give the same normal-
ized response curves representedhy (24) k andD1, are
determined as a function aof for a given response curve.
Therefore, we have to measure directly the fluid velouity
to obtaink andD1> for a single pulse injection with a coated
column.

Using measured values af, the values forU and a
are determined by curve fitting. Values flrand D1, are

k="2_1

= @)

D12
_ {(14+6k+113) / (1+K) H(R?U?) / (24a))
1+/1-[{(1+6k+11k2) /(1+k)2H{(R2U?) / (12a2)}]
(28)

3.2. Parameter sensitivity

Parameter sensitivities &fandD1, with respect tai; are
given by differentiatingl = constant and = constant as:

fa 0 _ TR 29
ug dD12 _ 4(1 + 4k)
D1 dua (1 + 6k + 11k2) — 48(D12/(RU))2
~ 41+ 4k)
1+ 6k + 11k2 (30)

where the approximation irEg. (30) is made assum-
ing the validity of Eq. (8) For small k, i.e., a weak
adsorption system, we obtaitug/k)(dk/dug) 1/k

and (ua/D12)(dD12/dug) = 5, while for a largek,
(ua/k)(dk/dug) = 1 and(ua/D12)(dD12/duy) = 1. There-
fore, for a weak adsorption system, the precise measure-
ment ofug is needed to estimaf@;,, and the relative error

of D12 becomes a maximum of five-fold larger than the
corresponding error fou,.

~

3.3. Taylor dispersion analysis for weak adsorption

For smallk, the transport in a coated column in a special
case att = 0 may be regarded as the Taylor dispersion.
The normalized solutiofappo for the Taylor dispersion is
obtained by setting = 0 in Eq. (24)as:

(1/+/Bragt)expl— (L — Uot)?/(4aot)}

Cappo(t) =
appo(?) Lzz(l/m)eXQ—(L — Uot)?/(4aon)}dr
(31)
where
R2U02
ap=D + 3la
0 12,0 48D120 ( )

In the Taylor dispersion, two parameter valuggandD12 o,
are obtainable by the curve-fitting methf#6]. If Eq. (31)
instead ofEq. (24)is used for curve fitting with variable
parameters ofJg andD12 0, we obtainlUp = U andag = a.
Ignoring the first terms ifEqgs. (7a) and (31ajives:

14k

- p 32
1+6k+11k2 *2 (32)

D120 =
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Thus, the relative error is:
D12 — D120 . k(5+11k)
D12 T 14 6k+ 1142

(33)

3.4. Moment method

Initial parameter values for the curve-fitting method can
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third moments are different. In faat® (1) does not vanish
but Cape® (f) = 0. The third moment of the Golay solution
does not become zero, implying that the average concentra-
tion C(x, t) is expressed more accurately by the Golay solu-
tion Cg(x, t) than by the Gaussian-like approximate solution
CapplX 1).

In the Golay model, the overall cross-sectional average

be obtained from the first and the second temporal momentsconcentration is given a€g(z,7) = (1 + k)Cg(z,t) by

of the measured response curve, i.e., mean residence time
and variance?, as:

7 — Jo_Cmeadn "
fo Cmeadt)ds
o0 2
ol = Jo (t = D*Cmeadt)dt o5
Jo~ Cmeadn)dt

Theoretically, fromEq. (12) the first and the second mo-
ments atr = L are obtained as:

- StCpp(L, dt L
;:M:_(1+21) (36)
J&CappL, dt U LU
X (t — )?Capp(L, Dt L\?
2:fo(oo) app(L, 1) :2(_> i(1+4i)
22 Cappl(L, Dt u) LU LU

(37)

While solving Egs. (36) and (37jor k and D12, k is first
obtained by:

22— )

u az

k= ——— — — 38
3+V1+4a L (38)
where
o2
o = ;—2 (38a)

Then,D12 can be estimated under condition represented by
Eqg. (8)as:

2y
D= ——_lu, (39)
B+ B* -4y
where
20 — 1+ /1+ 4«
ﬂ _ o + + (393)
42 — @)
1+ 6k + 11k%2 R?
= 39h
v (1+ k2 4812 (39)

4. Higher-order approximate solution
4.1. Modification of Golay equation

The distortion of response curve is related to the third
moment. As discussed iBection 2 the first and the sec-
ond spatial moments of the Gaussian-like approximate so-
lution agree with those for the cylindrical model, but the

neglecting{c(R, z, t) — Cg(z, 1)}. The first and the second
spatial moments of g agree with those of the Gaussian-like
approximate solutiorggs. (18) and (19)The third moment
is given as:

(40)

On the other hand, the third spatial moment for the cylin-
drical model is given asAppendix A):

C®w 2y { k(1 + 4k)
coO 2(1+ k)2
1+ 10k + 44k2 4+ 1223 + 17%*  R2U?
1+ k)2 480D1,2 } !
+ E(t) (41)

where Z(t) is a function such that lim, o, {Z(¢)/t} = 0.
When the first term is dominan,in the Golay equation
should be changed o, the modified Golay equation:

. RPU [k(144k) 1+ 10k + 44k% 4+ 1223 + 177%*

"~ 6a |2(1+k)? (1+h)?
R2U?
— 42
x 480D122} (42)
Under condition ofEq. (8}

1+ 10k + 44k2 + 1223 + 17%* R?U

pr o 14 10K+ 447 + + 43)

A+ k(A + 6k 4+ 11k2) 60D12

Note thatCg in the modified Golay equation does not reduce
to Capp Whenk — 0. Cg atk = 0 is an approximate so-
lution for the Taylor dispersion whose third moment agrees
with that for the original model, which is equivalent to the
cylindrical model atk = 0.

4.2. Solution of Golay equation
Under boundary and initial conditions, corresponding to

Egs. (10) and (11jvhereCypp is replaced byCg, Eq. (7)
with b* is solved (sed\ppendix B using:

m 1 T
Cenn= (W) A+ hb* ﬁexp{—(é + 27)}
x (2y/(¢ +1)71) forx,t>0 (44)
where
Z 1
= el l;(x - Uy (44a)
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(44b)

and I1(w) is the modified Bessel function of the first kind
of first order, defined as:

ad 1 w 2n+1
I(w) = nX:%n!(n ! (E)

forw=>0 (44c)

Note that whenb* — 0, Cg reduces toCapp using the
asymptotic properties of the Bessel functioh(w) —
exp(w)/+/2rw atw — oo (for example, se§27]).

The following rms erroeappis introduced to estimate the
difference betweeg andCsypp at the detecting pointy(=
L):

o _ [ 1CaL, ) — CapL, 0)d vz
W J&Ca(L, 1yy2dr

Error eapp is characterized by the two parameteksand B:

(45)

a

A=T5 (46)
B= bf (47)

According to practical computatiorzapp can be approxi-
mated as:

B B
gapp~ 05— for A < 0.1 and— < 0.08

A 7A (48)

5. Measurements of binary diffusion coefficient and
retention factor

5.1. Impulse response measurement

C.Y. Kong et al./J. Chromatogr. A 1035 (2004) 177-193

diffusion column was replaced by a polymer-coated capil-
lary column (Ultra Alloy CW-15W-1.0F, bonded polyethyl-
ene glycol, film thickness= 1pm, inside diameter=
0.515 mm, length= 15.86 m, coil radius= 135 mm) sup-
plied by Frontier Laboratory, Japan. The radii of both ends
of the column were measured with an X-ray micro-analyzer
(JEOL, JXA 8900RL, Japan). Total volume of the dif-
fusion column between the injector and detector was
evaluated from an impulse response measurement for ben-
zene into a liquid hexane stream at atmospheric pressure
and room temperature. Impulse response measurements
were conducted by injecting the acetone solution of phe-
nol (0.032umol of phenol was loaded in most runs) as
a tracer into a supercritical GOstream at 313.15K and
11.6-28.6 MPa. Tracer concentration was measured with a
UV-Vis multi-detector (MD-1510, JASCO, Japan) by scan-
ning from 195 to 355nm at increments of 4 nm. Temporal
changes in flow rates were measured with a soap-bubble
flowmeter 30-40 times in the course of a single run
(from 0 to 80-100 min), and their mean and the ratio of
standard deviation to mean were calculated, as shown in
Table 1

Acetone (99.5%, Aldrich) and phenol (99%, Aldrich)
were employed without further purification. Wavelengths
of 275 and 271 nm were used in the analyses for acetone
and phenol, respectively.

5.2. Determination of parameter values

As shown inFig. 2(a) and (b)the measured response
curvesCmeas Shown as blank circles, for acetone and phenol
at 313.15K and 17.87 MPa are compared to those calculated
from Eq. (24)with assumed values @1, and values of;
andt, at 10% of the maximum peak height of the measured
curve, the same as in measurements of Funazukuri et al.

The experimental apparatus used for the Taylor disper-[26]. The degree of fit is estimated by the rms ersoas

sion method was described previoufdg]. In this study, a

Table 1

defined byEq. (26) As shown inFig. 2, we can judge that

Fluid velocity ua measexperimentally measured and the values for binary diffusion coeffi@ept retention factok and fitting errore obtained from the
curve-fitting method for acetone and phenol in supercritical carbon dioxide at temperature 313.15K and pressures from 11.6 to 28.6 MPa

Pressure (MPa)  Ugmeas Acetone Phenol
Mean (10°3ms™1) S.D./mean (%) Dz (10°8m2s1) k e (%) D> (108m2s™1) k & (%)

11.64 9.434 1.16 1.843 0.0499 0.83 1.529 2.555 0.16
12.61 9.347 3.61 1.768 0.0461 1.19 1.388 2.250 0.25
13.54 9.097 2.83 1.731 0.0399 3.03 1.370 2.031 0.15
14.37 8.804 1.74 1.675 0.0286 0.96 1.328 1.869 0.14
14.43 9.076 1.53 1.664 0.0401 0.61 1.306 1.893 0.19
16.13 9.144 2.01 1.592 0.0427 0.15 1.261 1.697 0.31
17.37 8.765 1.36 1.540 0.0432 0.96 1.237 1.584 0.12
17.87 8.840 1.03 1.505 0.0482 0.62 1.218 1.548 0.12
20.11 8.697 1.46 1.443 0.0371 0.86 1.176 1.384 0.16
21.90 8.641 0.81 1.387 0.0353 0.88 1.128 1.304 0.03
24.68 8.499 0.92 1.338 0.0381 0.43 1.093 1.199 0.13
25.09 8.620 1.05 1.337 0.0336 0.09 1.083 1.174 0.25
25.30 8.254 0.85 1.349 0.0472 0.49 1.078 1.206 0.16
28.58 8.365 0.78 1.267 0.0374 0.53 1.039 1.090 0.06
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Fig. 2. Comparison of response signal measurey &t 313.15K and
17.87 MPa andiameas = 8.84 x 103 ms™! with those predicted with
some parameter values (lines) for: (a) acetone at 275 nnt an0.0482;
(b) phenol at 271 nm and = 1.548.

the agreement is good fer< 0.01 and acceptable far <
0.03.

Parameter values were determined by minimizing the er-
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Fig. 3. Error contour map in the plot &2 vs. k for data inFig. 2 at the
measured velocity, meas= 8.84x10-3ms1 for: (a) acetone; (b) phenol.
The dot shows the best-fit poirit:= 0.0482 andD1» = 1.51x10 8 m2s1
for acetone ank = 1.548 andDi» = 1.22 x 108 m2s~! for phenol;
“x" shows that obtained by the moment method.

ror. A set of parameter values with the same error value are shown irTable 2for eachu,. These figures suggest that it

makes a contour in the parameter spdeig. 3(a) and (b)
depict the error contour maps in tikeD12 plane for the
data shown inFig. 2(a) and (b)at the velocityuameas =
8.84x 103 msL. From these figure& andD1» can be es-
timated simultaneously from a single runias- 0.0482 and
D12 = 1.51 x 10 8m?s~1 for acetone and = 1.548 and
D12 = 1.22 x 10-8m?s~1 for phenol. The values obtained
by the moment method, calculated frdfqs. (38) and (39)
are also shown ifrig. 3as “x”.

The error contours for increasing, by 1 and 2% are
shown inFig. 4. Thek andDj2 values minimizing the error

is not possible to determine all three paramekei3;,, and
Uz simultaneously; howevek and D12 can be determined
when the fluid velocity is given, as discussediection 3.1
Parameter sensitivity with respect tg also is shown in
Table 2 The estimated values ifable 2agree well with the
theoretical values given bigs. (29) and (30)

5.3. Effects of wavelength

Fig. 5shows the dependence of wavelength from 195 to
355nm at increments of 4nm for the same rurFig. 2

Table 2
The best fitted values for the velocity 0f meas 1.01 X uameasand 102 x uameasfor the response curves Ifig. 2 and their parameter sensitivity tg
Ua (103ms™Y) k D1z (10 8m?s71) Ak (%) AD12/D12 (%)
Acetone 8.84 0.04816 1.505 - -
8.93 0.05884 1.577 22 4.8
9.02 0.06951 1.650 44 9.6
Phenol 8.84 1.5483 1.218 - -
8.93 1.5743 1.240 1.7 1.8
9.02 1.6002 1.262 3.4 3.6




184 C.Y. Kong et al./J. Chromatogr. A 1035 (2004) 177-193

2 T T T T T 101 ET T T T T 1 T T T T T T T T T 713
Acetone m | F o Acetone E
10° &k 4 Phenol -
[0} E
e E
T g 10°
o~ = 3
o 3
S 2 102 E
o < S
— 3 p
- 10 E
N E
o 10—4 | S T NN TR AN SR SN TR SN A ST M J
(@ " 200 250 300 350
101 g[ T T T T [ T T T T [ T T T T [g
1.9 I I I I I F ]
0.045 0.05 0.055 0.06 0.065 0.07 0.075 A AL ALAL AN AL ALNALN]
(a) K 10° 3 -
x F ]
15 T T T T T T L 1
Phenol I 10t -
50000000000000000000000000000000C00C0
1.4 I F i
F'"‘n 102 -1 PR TR T RN N TR TR TR NN NN S T S 1 l-
e 13 (b) " 200 250 300 350
10t
0
=)
—
- 12 -
S »
) ~
1.1 o
o
—
1 I I I I I I g—
154 155 156 1.57 158 159 1.6 1.61 o [ g
(b) k
Fig. 4. Error contour map in the plot @1, vs. k for variousu, values © 1
at: (1) measuredigmeas () 1.01 X uameas (I1l) 1.02 X uameas for the
data inFig. 2 Contours shows = 0.05, 0.03 and 0.01 from the outer w
side. The best-fit values are listed Table 2 5
o
In principle, parameter values do not depend on the wave- g
length, but in reality they do depend on wavelength because =
of experimental noise or non-linearity of the detector. Strong
absorbance is preferable against the noise of the detector o A
signal, but results in a loss of detector linearity. In this study, 200 250 300 350
wavelengths of 275nm for acetone and 271 nm for phenol @ Wavelength, nm

were chosen to analyze respons_e curves h_a\_/lng mOderat?—ig. 5. Effects of wavelength. (a) Absorbance at the peak top of the
absorbance values that resulted in a small fitting error andresponse curvek (b), D1z (c) and rms erroe (d) for the same run in
constant parameter values around these wavelengths, as hasg. 2 at each wavelength from 195 to 355nm at increments of 4nm:
been discussed in previous repd2g,26] (O) acetone; 4) phenol.

5.4. Effects of solvent o . .

concluded that the diffusion of phenol in the column is not
To examine the influence of solvent on the diffusion of affected by the solvent.

the solute in the column, several pulses of the neat solvent

were injected immediately after the pulse of the solution. 5.5. Effects of secondary flow

The solvent pulses passed through the peak of the solute in

the columnFig. 6(a)shows the response curve measured at  Fig. 7 shows the effect of flow rate on the measuted

the column exit when three pulses of acetone were injected.and D1, values in terms oDe S&/2, where the measured

Note that the first peak (#0) of acetone appearing at ca.parameters are denoted kyand D}, and the leveled-off

1800 s corresponds to the pulse of phefdd. 6(b) and (c) values byD1,, andDe andScare the Dean and the Schmidt

showk and D1 values obtained from the response curves number, respectively. The flow rates do not affect retention

passed by several pulses of acetone. Skead D1 do factors, but daDj, values, as shown ifig. 7(a) The er-

not depend on the number of additional pulses, it can be ror in D12 ascribed to secondary flow due to column coiling



C.Y. Kong et al./J. Chromatogr. A 1035 (2004) 177-193 185

0-37 LI L N L L L L L L B B L L B LI LI 101 EI UL | L | TTTT | L | L | LU | TTT IE
L Acetone, 275 nm F o Acetone 3
L I & Phenol 1
@ | #0 | #1 f#2 | #3 . [ AAAMA A A A A A A A
g 02f 10° E
© - = 3
8 r ) E E
5 i . X C ]
2 i L ]
A 1L =
<0 - L Phenol, 271 nm_|] 10 E 3
L F —50Cxo-0—0—0—0—0—0—0— ]
Oiw ! \wa JLl/\\A 102-||||||||||||||||||||||||||||||||||-
1500 2000 2500 3000 3500 4000 4500 (a) 0 5 10 15 20 25 30 35
(a) Tlme1 S 3 -I T T | TT 17T | UL | TT 1T | TT 17T | UL | T I-
1.3 ‘ i i
Phenol i ]
820 ]
1.2t 1 o i ]
« 7AY _\&I‘ L ]
[a] 1 I 1
1.1 — L i
1 | | | | O-n|||||||||||||||||||||||||||||||||-
(b) 0 1 2 3 0 5 10 15 20 25 30 35
1.2 T T T T (b) De-Sc*?
Phenol . .
5 Fig. 7. Effects of the secondary flow on apparknhfa) and the ratio of
‘v 11k i apparenD;,’ to the leveled-offD1» value (b), measured at 313.15K and
NE ’ . A ’ 17.87 MPa: () acetone; £) phenol.
E
g 1f i the amount of phenol, a smooth response curve cannot be
o obtained at extremely low injected amount. When a noise
elimination procedure is used, a signal can be extracted by

0.9 L L L ‘ removing high frequency noises from an observed signal
©  The t(i)mes ofinjlecting ne; acetonespulses [29]. As shown in this figure, for injected amounts from
0.0003 to 0.0umol, D12 values are nearly constant, and
Fig. 6. Effects of solvent. (a) Response curves (chromatograms) for three N0 dependence of solute concentration onDhg values is
acetone pulses after loading a pulse of phenol in acetone, measured apbserved. When amounts of phenol injected are lower than
313.15K, and 25.09 MPd (b) andDs2 (C) for phenol vs. the injection 143, mo|, fitting errors are larger because the noise signals
times of the acetone pulses, where zero in thaxis designates the " . - . . L
injection of phenol dissolved in acetone. are competitive with the original signal. After noise ehmma—
tion treatment, however, thg;»> data become consistent with
the value for injected amounts from 0.0003 to Qu®dBol.
is less than 1%25] by the criterionDe S&/2 < 8 with an Thus, theD1, values obtained for injected phenol amounts
uncoated capillary column. But the effect was not clarified lower than 101 wmol can be considered at infinite dilution.
with a coated column. Recently, the auth[#8] report that The D12 data for phenol in present and previous stugi?dg
the retention factor is not influenced by secondary flow and were measured in this range. Note that maximum phenol
the effect on the binary diffusion coefficient with a coated concentration at the detector among the data plott&ging
capillary column becomes small for large retention factors. (4.9umol) is 31 x 10~ in mole fraction, much lower than
In fact, as shown irFig. 7(b) D1o for phenol is less influ-  the solubility of 0.021 in mole fraction as estimated in the
enced by secondary flow than that for acetone. Although the literature at 309 and 333K by Van Leer and PauldB@]
criterion can be relaxed with a coated capillary column, the and at 333 to 363 K by Gala-Gonzalez et a[31].
flow rate for the measurement was restricteDésS¢/? < 8
in this study. 5.7. Correlation of binary diffusion coefficients

5.6. Infinite dilution for binary diffusion coefficients As described in previous studies under supercritical con-
ditions[21], the retention factor is correlated well with fluid
Fig. 8 plots the effect of different phenol column-loading density, and the binary diffusion coefficient with viscosity
amounts on determined values and rms error. Since ab-well. Fig. 9shows the correlations of: (Bwith CO, density;
sorbance of the response curve decreases in proportional t@and (b) D12 with COy viscosity. The solid lines show the
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Fig. 9(c) plots the fitting error. The values by the moment
method are also shown in these figures by ‘and “x” for Fig. 9. Comparison of the parameter values and fitting errors for the
acetone and phenol respectively. As noted (refe[rl&}) curve-fitting and moment methods for acetone and phenol at 313.15K.

. . (a) k vs. CQ density; D12/T (b) and rms error (c} vs. CQ viscosity:
the values obtained by the moment method are mfluenced(Q ) curve-fitting method for acetone and phenol, and &) moment

directly by experimental errors in the frontal and tailing por-  method for acetone and phenol, respectively.
tions of the response curve, especially for higher moments.
In fact, the retention factors obtained from the first moment
agree well with those obtained by the curve-fitting method.
However, the binary diffusion coefficients from the second of binary diffusion coefficients under supercritical condi-
moment deviate from those obtained by the curve-fitting tions.
method.
In Fig. 10(a) D1 values for acetone are compared with
those obtained from the Taylor dispersion mettip@l,32] 6. Discussion
D12 values for phenol are comparedhig. 10(b)with those
obtained from the input—output response technique with an6.1. Effect of surface diffusion
uncoated capillary column connected after a coated col-
umn, the so-called the modified Taylor dispersion method The effect on determined parameter values of the adsorbed
[33]. Solid lines indicate the correlations of the present species diffusing on the surface of a polymer film coated
data, which agree well. This evidence validates the useon the column wall due to the concentration gradient is
of a polymer-coated capillary column for measurements examined. In this casésq. (4) is modified to contain the
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with literature data obtained using the origifa6,32] and modified[33]
Taylor dispersion methods(}, A) present data for acetone and phenol, ()
and {+, x) literature data for acetorj26,32]and pheno[33], respectively.

Fig. 11. Error contour map for the plot &1, vs. k for acetone (a) and
phenol (b), based on the modified Golay solution for the same run shown

term of surface diffusion as: in Fig. 2 (—) Gaussian-like approximate solution; (——-) modified Golay

) 8°c  2D12d lution.
K —kDeol _ 27129 Gt — R (49)  SoMen

ot ax2 R or
whereDs is the surface diffusion coefficient based on the course, agreement in the first and the second moments does
adsorbate concentration gradient. not always result in identical response curves. Although the

This modification does not influence the zeroth and first response curve shows a distortion, which is characterized by
moments, but does influence the second moment. Indact, the third moment, the Gaussian-like approximate solution

in Eq. (16)should be replaced bg* as: does not express the distortion sufficiently.
2 52712 Fig. 11 compares the error contour maps between the
* = D12+ KDs | 1+6k+ 11" R°U (50) modified Golay solution and Gaussian-like approximate so-

1+k 1+k 48D12 lution. Since the error contours for both models coincide as
SinceDs is expected to be lower thab;, and the second  shown inFig. 11(a) no difference exists between the two
term is dominant irEq. (50) the surface diffusion does not  solutions for acetone. However, for phenolfig. 11(b) k
need to be considered in impulse response measurementdepends on the model only slightly, i, does not depend

with a coated column. on the model at all. While the contour appears to shift hori-
zontally slightly, the values fdt andD1, were consistent in
6.2. Validity of the approximation both models (difference of best-fittédvalues was 0.03%).

Analysis of the spatial moment revealed that the third mo-

The accuracy of the Gaussian-like approximate solution ment of the cylindrical model is positive. However, tailing
is estimated byr"(t) in Eq. (16) In the measurement for results in negative values for the third moment. Therefore,
acetone inFig. 2(a) I'(¢)/(2at) = 0.0002—-0.0004 for the tailing of the response curves cannot be explained by this
range ofr = 1700-1900s, and for phenol iRig. 2(b) model. As noted by Madras et §24], another model must
I(r)/(2at) = 0.0001-0.0003 for = 4000-5000s. The sec- be introduced to describe the tailing.
ond term inI"(t) of Eq. (16a)is negligible for acetone and The difference betwee@,pp and Cg is less than 0.6%,
phenol. According tdeqg. (23) the difference in the diffu-  according toEq. (48) In our case, the Gaussian-like ap-
sion coefficients is smaller than 0.04%, which is smaller proximate solution well predicted response curves mea-
than the accuracy of the parameter as showhiin 3. Of sured. Consequentl( is approximated bYCapp With good
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Acetone

the inner wall of the column o;> value can be reduced
significantly. Therefore, diffusion coefficient measurements
with a coated capillary column possess an advantage over
those by the Taylor dispersion when determining diffusion
coefficients, unless adsorption is negligible.

1.4

€

0.03
0.01

13

6.4. Effect of determination error of column radius
1.2

Dlzvo,lo 8 m2 'S_l

The accurate radius and length of the diffusion column
are essential in the determination of binary diffusion coeffi-
cients. However, column radius may be difficult to measure.
In this section, the effect of determination error of column
N radius on the parameter values is examined.

§.425 8.43 8.435 8.44 8.445 For a single run,U and a can be obtained from the
curve-fit, and the flow raterR2u,, is measured. By differ-
entiatingU = constanta = constant andR?u, = constant,

Fig. 12. Error contour map in the plot &f120 vs. Ug for acetone shown the sensitivities tdR are:
in Fig. 2(a)at 313.15K and 17.87 MPa:)(best-fit point; () obtained R dk 21+ k)
by the moment method. Eﬁ = _T

accuracy. It should be noted that the moment method can—idD12 ~ 81+ 4k

not assure validity of the models because agreement of theP12 dR 146k + 11k2

first and the second moments in the models do not certify where Eq. (52)is derived withEq. (8) Whenk is small,
that of response curves predicted by models and measuredhe D1 error is almost eight times as large as thatRof
experimentally. As k becomes larger, however, tBa, error decreases. The
column radius should be measured as accurately as possible
6.3. Estimation of diffusion coefficient for weak adsorption for measurements with smalvalues.
In the Taylor dispersion methodgy andag are given from
Sincek is very small for acetone, the transport of ace- the measurement. Then,
tone in a coated column, assumikg= 0 as shown in R dDio
Eqg. (31) may be equivalent to the Taylor dispersion. For — —— =
acetone irFig. 2(a) the error contour map in thdp—D120 D12 dR
plane is obtained as shown kig. 12 According to this er- Thus, theD1» error is twice as large as that & Conse-
ror contour maply = 8.434x 103mst and D1p0 = quently, the more accurate measuremeriR @ required in
1.20 x 1078 m?s~1 can be determined simultaneously. For the chromatographic impulse response method than in the
the measurements here, accuracyugfwas estimated as  Taylor method. In contrast, wheaqis large, the relativ®;»
+1% (Table ). FromEq. (30) the relative error 0D15 is error is small. This results in the advantage of the chromato-
estimated as-4.6% when adsorption is considered (assum- graphic impulse response method over the Taylor disper-
ing k # 0). In contrast, when adsorption of acetone is ig- sion method. For instance, whén> 1.2, (AD12/D12) <
nored (assuming = 0), the error becomes 20% according 2(AR/R).
to Eq. (33)
Adsorption of tracer components on the uncoated column 6.5. Measurements in the near-critical region
wall occurs especially in the near-critical region, even for
weak polar compounds such as naphthalébg Despite the Recently, critical anomalies in diffusion coefficients mea-
weak adsorption, it cannot be ignored for the determination sured by the Taylor dispersion method have been reported
of diffusion coefficients when the value of the relative error [34—36] However, Levelt Sengers et §B7] reported diffi-
of Eq. (33)is not negligible. In the Taylor dispersion by both  culty in obtaining measurements in the near-critical region
the curve-fitting and the moment method, the measurementby the Taylor dispersion method.
of solvent flow velocityu, is not required for determining As mentioned earlier, adsorption of a solute on a column
D2 values. However, the impulse response method with a wall may occur in the near-critical regigh5]. This effect is
polymer-coated column by the curve-fitting method requires reduced in the chromatographic impulse response method as
the determination aiy as accurately as possible to determine compared with the Taylor dispersion method. When the ve-
k andD12 because the sensitivity f@, is nearly five-fold locity of a supercritical fluid has a parabolic profile, measure-
larger than that fou; whenk is small. Although a more  ments obtained by the chromatographic impulse response
experimental burden in the, measurement is needed with method are reliable even in the near-critical region. How-
a polymer-coated column, the effect of solute adsorption on ever, the measurements are based on assumptions such as

11

Ugp,103m-s?

(51)

(52)

(53)



C.Y. Kong et al./J. Chromatogr. A 1035 (2004) 177-193

189

a constant supercritical fluid velocity and independence of The tailing of the response curves cannot be explained by

the diffusion coefficient and retention factor from concen-
tration. These assumptions, which are true far from the crit-
ical points, have not been verified in the near-critical region

linear and equilibrium adsorption from the third moment.
The applicability of the Gaussian-like approximate solu-
tion was experimentally demonstrated with a poly(ethylene

because large negative values of partial molar volumes for glycol)-coated capillary column using phenol dissolved in
solutes have been reported. Since the barycentric motionacetone injected into a laminar flow of supercritical carbon

significantly affects the mass transfer in the critical region,
as noted by Clifford and Coleli88], the further studies are

dioxide at 313.15K and 11.6—-28.6 MPa. By comparing mea-
sured and calculated response curves for both phenol and

needed for measurements in flowing systems such as in theacetone individually, infinite-dilution binary diffusion coef-
chromatographic impulse response method as well as theficients and retention factors for both compounds were deter-

Taylor dispersion method.
6.6. Boundary condition used by Lai and Tan

Lai and Tar[18] employed the following condition instead
of Eq. (11)

;o m o\ 8
S e

The Gaussian-like approximate solution is obtained from
Egs. (9), (10), and (543s:

atx=0 (54)

mo x (x — U2
—) - —exp}————
7R2) uat /Arat 4at
forx,t>0

Chpplxs ) = (
(55)

and the temporal moments at= L are expressed as:

7= (56)

2
0/2=2 £ i
U) LU

The value ofa/(LU) is much smaller than unity under their

(57)

experimental conditions as well as under the present condi-

tions; for exampleq/(LU) = 6 x 107° in case ofFig. 2(a)
Although Eq. (54)does not appear to represent the exper-
imental conditions, the difference in measutednd D12
values caused by differences in initial conditions between
Egs. (11) and (54)s negligible under these experimental
conditions.

mined simultaneously for each injection when fluid velocity
was measured experimentally. The binary diffusion coeffi-
cients determined for acetone and phenol agreed with those
for each compound separately as reported in the literature.

Reliability of the parameter values was examined by
error-map analysis of the response curves. Potential errors
were evaluated by considering the compatibility of the
measured curves with the predicted ones. The effects of
wavelength and secondary flow on the determined values
are discussed. The system was at an infinite dilution, which
was confirmed by injecting solutions at different concen-
trations over a wide range of solute quantities. To examine
the effect of an organic solvent (acetone) on the determined
binary diffusion coefficients, several pulses of acetone were
injected to the diffusion column immediately after the in-
jection of phenol dissolved in acetone. Whereas the acetone
pulses passed the phenol peak, the solvent (acetone) did
not affect the determined binary diffusion coefficients for
phenol.

Concerning error ascribed to uncertainty in diffusion col-
umn diameter, the more accurate measurement is required
in the chromatographic impulse response method than in
the Taylor dispersion method whéris small, i.e., for low
and non-polar compounds. In contrast, wikda large, i.e.,
for polar and/or large molecular compounds, the chromato-
graphic impulse response method is more suitable than the
Taylor dispersion method because the relabe error is
smaller.

8. Nomenclature

a, ag, a* defined byEgs. (7a), (31a) and (50)
7. Conclusions respectively (is™1)
A defined byEq. (46)

The Gaussian-like approximate solution based on a linear b, b*
and equilibrium adsorption isotherm was shown effective
and accurate for determining binary diffusion coefficients B
and retention factors for highly viscous liquids or solids C(r: X t)
in supercritical fluids from response curves obtained by
the chromatographic impulse response technique with aC(x 1)
polymer-coated capillary column using curve fitting. The
sensitivities ofD12 andk to average fluid velocity; was Capplx, 1)
derived from the Gaussian-like approximate solutions.
Moreover, the Golay equation was modified to allow agree- Capp(?)
ment of the third moment with that of the cylindrical model.

defined byEgs. (7b) and (42)
respectively (m)

defined byEqg. (47)

tracer concentration in cylindrical column
(molm~3)

cross-sectional average concentration,
defined byEq. (6)(mol m~3)
Gaussian-like approximate solution,
given byEq. (12)(mol m—3)

normalized concentration at= L, defined
by Eq. (24)(s™1)
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normalized concentration at= L based
on the Taylor dispersion, defined

by Eqg. (31)(s™})

cross-sectional average concentration given
by the Golay equationE(g. (7) (molm—3)
impulse response curve experimentally
measured at = L (molm~3)

normalized impulse response curve
experimentally measured at= L, defined
by Eq. (26a)(s™1)

binary diffusion coefficient (fhs™1)
apparent binary diffusion coefficient
including secondary flow effect (s 1)
binary diffusion coefficient based on the
Taylor dispersion (rhs™1)

surface diffusion coefficient (frs™1)

Dean number=£(2Rup/n)v/R/ Roil)
modified Bessel functions of the first kind of
zeroth and first order, defined by

Egs. (B.9a) and (44cyespectively

Bessel functions of the first kind of zeroth
and first order, respectively

retention factor for polymer layer to
supercritical fluid

apparent retention factor including secondary
flow effect

distance between the injection and
detecting points (m)

total amount of tracer input (mol)

radial distance variable (m)

column radius (m)

coil radius (m)

Schmidt number=£n/(pD12))

time (s)

mean residence time, defined By. (34)(s)
average fluid velocity (mst)

=ua/(L+k) (ms™)

fluid velocity based on the Taylor
dispersion (ms?)

axial distance variable (m)

axial distance variable on the moving
coordinate, defined biq. (7¢)(m)

Greek letters

r()
(), 5(x)
€, €app
n

A(Y)

A

n
Z(t)
0

the residual part of the second moment,
defined inEq. (16)(m?)

Dirac’s delta functions (st and 11,
respectively)

rms error defined b¥gs. (26) and (45)
respectively

viscosity (Pas)

defined inEq. (20)

nth positive root ofEq. (16b)

defined inEq. (41)(m°)

density (kg nT3)

o? second-order temporal moment, defined
by Eqg. (35)(s?)
¢ angular variable

Superscripts

(n) nth order spatial moment with respectzo

- overall cross-sectional average, defined as
total quantity of solute both in fluid and in
polymer phase per cross-sectional area
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Appendix A. Spatial moments for capillary column
The angular variable is eliminated for convenience in

this appendix. Transferring the space variablérom x,
Egs. (1)—(5)are written as:

ac b 19 [ +820 ()ac+Uac (A1)
— = -—|r— — = — — .
o T2 rar\ar) Tz T e T %
2D
k(% gy 2Prde g (A.2)
ot 0z R or
) .
X _finite atr=0 (A.3)
or
c=0 atz=+4+c0 (A.4)
o m 8(2) _

C‘<W>1+k atr =0 (A.5)
where

A2
u(r) = 2ua{1— <E) } (A.5a)

Using thenth spatial moment™ (r, r) defined byEq. (13)
Egs. (A.1)—(A.5)become:

ac™ 19 ( ac™
— -7 — 1D (n—2)
ot er ar <r or +nn ) D1z
+nu(r)c™Y — nug*-D (A.6)
dcm 2D dc™
k(E— pnugnd) = PR T ok (AT)
ot R or
dem
C  _finite atr=0 (A.8)

r
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o 1 (1)
1+k \nR? atr =0 (A.9)

¢ =0 forn+£0

The cross-sectional averaged® (r, r) is defined by:

2 R
M) = = /0 ", nyrdr (A.10)

And the overall cross-sectional averag®’(r) is defined as
the average of the total quantities both dissolved in the fluid

and absorbed on the wall:
C™ (1) = C™ (1) + k™ (R, 1) (A.11)

From Egs. (A.6)—(A.9) the equations foIC™ (r) can be
derived as:

dc® _
5= —nUCTY 4+ n(n — 1) D1,C" 2
2 R
+n—2/ u(r)c("_l) (r,Hrdr (A.12)
R Jo
cO -
~ T aR? atr =0 (A.13)
C™W =0 forn#0

For the zeroth momenEgs. (A.12) and (A.13Withn =0
give:

CO%n=—;
6 )

andEgs. (A.6)—(A.9)can also be solved

1 m
O Oy m
T =C (t)_1+k(7rR2>

For the first momentz=gs. (A.12) and (A.13yive:
Y@ =0

(A.14)

(A.15)

(A.16)
andEgs. (A.6)—(A.9)with n = 1 are solved as:

R3¢ 1/r\4 142k /r\2

D py = Kua A r

= Hz(zz) T+k (R)
o0

2+ 8k + 9%? r
+w}‘n§f"~’°(%§)

D1ot
X exp( )\.5?)}

where %, is the nth positive root ofEq. (16b)and A, is

determined as:
S () =3 () - 55 ()
2 + 8k + 9k?
6(1 + k)2

(A.17)

(A.18)

Cross-sectional average afV(r,7) is calculated from
Eq. (A.17)as:

c® ()=

R2uac© [k(l + 4k)

o
+ kD AnJo(un)
2
4D12 6(1+k) =

D1ot
xexp( P i = )] (A.19)
SinceCc® = 0 atr = 0, we obtain:
1+ 4k
A, Jo(h A.20
Z o) =~ 02 (A.20)

n=1

In order to obtainA,, integrateEq. (A.18) multiplied by
{Jo(Amr/R)(r/R)} in the range of = O-R:

2
(1 + %Ai) AnJom) =k~ AnJo(hn)
n#m
=_ 32(1 ; b + gii 2;2 (A.21)
Consideringeqg. (A.20) A, is given as:
32 1
A8 Jo(m) 1+ (K2/(A(L+ k)))A2,

For the second moment, froEq. (A.17)

(A.22)

m = —

2 R
ﬁ/ u(r)c(l)(r, Hrdr
0

_ R%ug’co | 14 6k + 11k
- 2Dpp 24(1 + k)2

Dyt
xexp( 22 Rlzz )}

In case ofn = 2, integratingeq. (A.12)with A.13, Eq. (16)
can be obtained.
FromEgs. (A.6)—(A.9) ¢®(r, ) can be expressed as:

@, 1) = 2act + go(r) + ho(r, 1) (A.24)

where
ch(o) r 2
[1 +k { R +
5+ 20k + 21k2

r 8 5 1+2k ( )5+
2 R 361+k 24(1 + k)2
( ) (14 3k)(1 + 3k + 4k?) (_)
8(1+ k)3 R
3+ 24k + 86k + 2083 + 251k*
+ 24k + + + (A.25)
288(1 + k)%
and hao(r, 1) is a function such that lim, o ho(r, 1) = 0.
FromEgs. (A.12) and (A.13yith n = 3, we obtain:
dC@) _ kA +40) o O
df ~ 2(1+k)?
N 14 10k + 442 + 1223 + 177%*
1+ k)4

AL+ k)z—’ljo ()

n=1 n

(A.23)

1+ Zk} R%u2

g2(r) = Tk Dis?

R4Ma3

—— 4G A.26
X 480022 3(0) (A.26)
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where G3(t) is a function such that lim, G3(f) =
Therefore Eq. (41)can be obtained.

Appendix B. Analytical solution of the Golay’s equation

The Golay’s equation is classified into the telegrapher’s

equation, and has already been solved (ref¢é8®3). How-

ever, the process was not familiar to us. In this appendix,
the Golay’s equation is solved using a fundamental method

for the linear partial differential equation.

Eq. (7)should be solved under the conditionsxafs. (10)
and (11) whereCgypp is replaced byCg, in the regions >
0 and—oo < z < oo. For convenience, we séi/(1 +

k))(m/mR?) = 1. First, we transform the equations into a

normal form:
With the following variables:

z 2a
Cg(z,t) = exp(—z 2 ) F(z, 1) (B.1)
2 2 _
f=o- T (B.2)
2 2
=z YO, (8.3)

and the notatiorF(z, 1) = f(§, x), Egs. (7), (10), and (11)
respectively, become:

2f  9f
o e = ®

1
exp[—%{(l + bPa)E+ (1 — bzoz)x}} [, =0

at (&, x) = x(o0, 00) (B.5)
SO 2) =38() (B.6)
where
L — (B.6a)
Va2 '

The regiorr > 0 on the ¢, t)-plane corresponds to the region

x > & on the €,x)-plane.

Letg(&, x) be a solution oEq. (B.4)whose value is unity

on the characteristic curves— g = £(¢ — p). Selecting the

variablew = /(x — q)2 — (¢ — p)? and settingg(¢, x) =
G(w), we obtain:

#’G  1dG
GO) =1 (B.8)

The solution in the regionx — ¢)° > (¢ — p)? can be

expressed using the modified Bessel function of first kind

and zeroth order as:

G(w) = Io(v/aw) (B.9)

X
A
(p.9)
rl
p+q p+q
)
r, 2 2
A gT,
o B
(P @)

My (R*% R4
2 2

Fig. 13. Closed curve for integration.
where
o
1 w\ 2n
Io(w) = —(—) forw=>0
o(w) ;("!)2 > >

For sufficiently large w, according to the asymptotic expan-
sion for the modified Bessel function (for example, see[27]):
I,(w) — exp(w)/+/ 27w for w — oo, we aobtain:

(B.9a)

exp(y/aw)
1/4
dG@) o lepow) o (B.12)
dw 2w

As shown in Fig. 13, take a point (p, q) on (&, x)-plane
(assume p < q).

Let Iy be the directed line segment from the point ((p +
q9)/2, (p+¢q)/2) tothe point (p, q), I'2 the segment from (p,
d) to (po, do) (assume p—g = po—qo), I"3 the segment from
(Po, Go) to ((po + q0)/2, (po + qo)/2) and I'4 the segment
from ((po + 90)/2, (po +q0)/2) to ((p +q)/2, (p + 9)/2).
In addition, let I'g be the closed loop composed of "1, I'2,
I's and I'4, and A be the domain surrounded by .

From Eq. (B.4) for f(¢,x) and g(&, x) = G(w):

8f_ og 9 %_ og
E(Eff) 3x<xf>

Applying the Gauss' divergence theorem to the above on the

domain A:
)}dsdx

[IREIC S R AC
ST ARENA

Dividing the path of the integral into the I'1, ', I's and
I'4, we can rewrite the above equation as.

TR
Iy I3 I3 Iy

Fromdy=—-dé¢andg=1o0on I,

(B.12)
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/ =—f d(fg)+2/ £ dg
I I

= —f(p, q)+f(p+q p+q) (B.13)

2

Similarly, fromdy = dé and g = 1 on I', dy = —d& on
I's,and x =& and g((p+¢)/2,(p+¢q)/2) =1on Iy

f d(fg) — / Fdg = f(po. q0) — f(p. @)
I I

(B.14)
+ +
/ = f(po.qo0) — f PoT 90 PO 40
r3 2 2
xg<p°;rq° p°+q°)+2/ fdg  (B.15)
/ _f p+q ptq _f po+qo po+4o
ra 2 2 2 2
po+4qo po-+qo
S\72 2
(p+49)/2
- 2/ SO {ge (A, 1) + g (A, L) }dA
(po+q0)/2
(B.16)

When po, g0 — —oo, we obtain f(po, go) — 0 from
Eq. (B.5) since 1 — %« > 0. Moreover, from Egs. (B.5) and
(B.10), we obtain f(po, g0)g(po, go) — 0. And

(g—p)/2
stdg=/0 Sfpo+ A, q0—2){gs(po+A,q0—A)
+gx(po+ X, qo — A)}da
(g—p)/2
=/0 Sflpo+A,q0—2)

L [IC -+ E—p) 4 — 0
E=po+i

dow 1) A
xX=q0—*

Therefore, Eq. (B.12) reduces to:

_ p+qg p+g (p+q)/2
f(p’Q)_f<T’T>_/oo

From the boundary condition in Eq. (B.6), when p+ ¢ > O:

flp, 9) =—1{g:(0,0) + g, (0, 0)}

q—p /
=—\/_I( a(g? — p?)
Va? — p? '

Exchanging the variable from (p, q) to (¢, x), using:
Egs. (B.1)~(B.3) and multiplying (1/(1 + k))(m/(wR?)),
we obtain Eq. (44) where b is replaced by b*. Note that
¢+ > 0haldsfor x, t > 0 because:

1+ 3%k D1> }

t
ChT=j {2k(1+4k) “at T b

SO, 1) {ge(A, M)

(B.17)

(B.18)

(B.19)
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